메뉴 건너뛰기




Volumn , Issue , 2012, Pages 170-173

The usage of the k-nearest neighbour classifier with classifier ensemble

Author keywords

classifier ensembles; Feating; kNN classifier; Random Subspaces; Rotation Forest

Indexed keywords

BASE CLASSIFIERS; CLASSIFIER ENSEMBLES; DATA SETS; ENSEMBLE ALGORITHMS; ENSEMBLE METHODS; FEATING; K-NEAREST NEIGHBOURS; K-NN CLASSIFIER; RANDOM SUBSPACES;

EID: 84866371504     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCSA.2012.42     Document Type: Conference Paper
Times cited : (10)

References (14)
  • 1
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Machine learning 24, 123-140, 1996.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 3
    • 79958861311 scopus 로고    scopus 로고
    • Feature-Subspace Aggregating: Ensembles for Stable and Unstable Learners
    • K. M. Ting, J. R. Wells, S. C. Tan, S. W. Teng, G. I. Web, "Feature-Subspace Aggregating: Ensembles for Stable and Unstable Learners," Machine Learning 82, 375-397, 2011.
    • (2011) Machine Learning , vol.82 , pp. 375-397
    • Ting, K.M.1    Wells, J.R.2    Tan, S.C.3    Teng, S.W.4    Web, G.I.5
  • 6
    • 0037403516 scopus 로고    scopus 로고
    • Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy
    • L. I. Kuncheva, C. J. Whitaker, "Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy," Machine Learning 51, 181-207, 2003.
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 8
    • 26944454815 scopus 로고    scopus 로고
    • The Impact of Feature Extraction on the Performance of a Classifier: KNN, Naïve Bayes and C4.5
    • Proceedings of the 18th CSCSI Conference on Artificial Intelligence AI'05
    • M. Pechenizkiy, "The Impact of Feature Extraction on the Performance of a Classifier: kNN, Naïve Bayes and C4.5," Proceedings of the 18th CSCSI Conference on Artificial Intelligence AI'05, LNAI 3501, 268-279, 2005.
    • (2005) LNAI , vol.3501 , pp. 268-279
    • Pechenizkiy, M.1
  • 9
    • 0031073477 scopus 로고    scopus 로고
    • A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms
    • D. Wettschereck, D. W. Aha, T. Mohri,, "A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms," Artificial Intelligence Review 11, 273-314, 1997.
    • (1997) Artificial Intelligence Review , vol.11 , pp. 273-314
    • Wettschereck, D.1    Aha, D.W.2    Mohri, T.3
  • 13
    • 76749092270 scopus 로고    scopus 로고
    • The WEKA Data Mining Software: An Update
    • M. Hall et al., "The WEKA Data Mining Software: An Update," SIGKDD Explorations 11, 2009.
    • (2009) SIGKDD Explorations , vol.11
    • Hall, M.1
  • 14
    • 33745962838 scopus 로고    scopus 로고
    • Comparison of Task Allocation Algorithms for Mesh Networks with Multistage Experiment
    • Springer
    • L. Koszalka, D. Lisowski, I. Pozniak-Koszalka,, "Comparison of Task Allocation Algorithms for Mesh Networks with Multistage Experiment," LNCS 3984, Springer, 58-67, 2006.
    • (2006) LNCS , vol.3984 , pp. 58-67
    • Koszalka, L.1    Lisowski, D.2    Pozniak-Koszalka, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.