메뉴 건너뛰기




Volumn 31, Issue 22, 2012, Pages 2552-2564

Sensitivity analysis for interactions under unmeasured confounding

Author keywords

Bias analysis; Gene environment; Independence; Interaction; Sensitivity analysis; Unmeasured confounding

Indexed keywords

ARSENIC; GLUTATHIONE TRANSFERASE;

EID: 84866180516     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.4354     Document Type: Article
Times cited : (48)

References (26)
  • 2
    • 0001679041 scopus 로고
    • Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome
    • Rosenbaum PR, Rubin DB. Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. Journal of the Royal Statistical Society Series B 1983;45:212-218.
    • (1983) Journal of the Royal Statistical Society Series B , vol.45 , pp. 212-218
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 3
    • 0025160334 scopus 로고
    • Indirect assessment of confounding: graphic description and limits on effect of adjusting for covariates
    • Flanders WD, Khoury MJ. Indirect assessment of confounding: graphic description and limits on effect of adjusting for covariates. Epidemiology 1990;1:239-246.
    • (1990) Epidemiology , vol.1 , pp. 239-246
    • Flanders, W.D.1    Khoury, M.J.2
  • 4
    • 0031661402 scopus 로고    scopus 로고
    • Assessing the sensitivity of regression results to unmeasured confounders in observational studies
    • Lin DY, Psaty BM, Kronmal RA. Assessing the sensitivity of regression results to unmeasured confounders in observational studies. Biometrics 1998;54:948-963.
    • (1998) Biometrics , vol.54 , pp. 948-963
    • Lin, D.Y.1    Psaty, B.M.2    Kronmal, R.A.3
  • 5
    • 0002121637 scopus 로고    scopus 로고
    • Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models
    • In, Halloran E, Berry D (eds).Springer-Verlag:New York
    • Robins JM, Scharfstein D, Rotnitzky A. Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models. InStatistical Models for Epidemiology, the Environment, and Clinical Trials, Halloran E, Berry D (eds).Springer-Verlag:New York, 2000;1-95.
    • (2000) Statistical Models for Epidemiology, the Environment, and Clinical Trials , pp. 1-95
    • Robins, J.M.1    Scharfstein, D.2    Rotnitzky, A.3
  • 7
    • 78650778119 scopus 로고    scopus 로고
    • Bias formulas for sensitivity analysis of unmeasured confounding for general outcomes, treatments and confounders
    • VanderWeele TJ, Arah OA. Bias formulas for sensitivity analysis of unmeasured confounding for general outcomes, treatments and confounders. Epidemiology 2011;22:42-52.
    • (2011) Epidemiology , vol.22 , pp. 42-52
    • VanderWeele, T.J.1    Arah, O.A.2
  • 8
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and nonrandomized studies
    • Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology 1974;66:688-701.
    • (1974) Journal of Educational Psychology , vol.66 , pp. 688-701
    • Rubin, D.B.1
  • 9
    • 0001058696 scopus 로고
    • Sur les applications de la thar des probabilities aux experiences Agaricales: essay des principle. (1923). Excerpts reprinted in English (D. Dabrowska and T. Speed, Trans.)
    • Neyman J. Sur les applications de la thar des probabilities aux experiences Agaricales: essay des principle. (1923). Excerpts reprinted in English (D. Dabrowska and T. Speed, Trans.)Statistical Science 1990;5:463-472.
    • (1990) Statistical Science , vol.5 , pp. 463-472
    • Neyman, J.1
  • 14
    • 34247236793 scopus 로고    scopus 로고
    • The identification of synergism in the suffcient-component cause framework
    • VanderWeele TJ, Robins JM. The identification of synergism in the suffcient-component cause framework. Epidemiology 2007;18:329-339.
    • (2007) Epidemiology , vol.18 , pp. 329-339
    • VanderWeele, T.J.1    Robins, J.M.2
  • 15
    • 67349266632 scopus 로고    scopus 로고
    • Sufficient cause interactions and statistical interactions
    • VanderWeele TJ. Sufficient cause interactions and statistical interactions. Epidemiology 2009;20:6-13.
    • (2009) Epidemiology , vol.20 , pp. 6-13
    • VanderWeele, T.J.1
  • 16
    • 75649111609 scopus 로고    scopus 로고
    • Empirical tests for compositional epistasis
    • VanderWeele TJ. Empirical tests for compositional epistasis. Nature Reviews Genetics 2010;11:166.
    • (2010) Nature Reviews Genetics , vol.11 , pp. 166
    • VanderWeele, T.J.1
  • 17
    • 0039531299 scopus 로고
    • 1st edn.Little, Brown and Company:Boston, MA.
    • Rothman KJ. Modern Epidemiology, 1st edn.Little, Brown and Company:Boston, MA, 1986.
    • (1986) Modern Epidemiology
    • Rothman, K.J.1
  • 18
    • 0026702157 scopus 로고
    • Confidence interval estimation of interaction
    • Hosmer DW, Lemeshow S. Confidence interval estimation of interaction. Epidemiology 1992;3:452-456.
    • (1992) Epidemiology , vol.3 , pp. 452-456
    • Hosmer, D.W.1    Lemeshow, S.2
  • 20
    • 73849140389 scopus 로고    scopus 로고
    • On the distinction between interaction and effect modification
    • VanderWeele TJ. On the distinction between interaction and effect modification. Epidemiology 2009;20:863-871.
    • (2009) Epidemiology , vol.20 , pp. 863-871
    • VanderWeele, T.J.1
  • 21
    • 79956351213 scopus 로고    scopus 로고
    • The interpretation of subgroup analyses in randomized trials: heterogeneity versus secondary interventions
    • VanderWeele TJ, Knol MJ. The interpretation of subgroup analyses in randomized trials: heterogeneity versus secondary interventions. Annals of Internal Medicine 2011;154:680-683.
    • (2011) Annals of Internal Medicine , vol.154 , pp. 680-683
    • VanderWeele, T.J.1    Knol, M.J.2
  • 22
    • 0029787622 scopus 로고    scopus 로고
    • Nontraditional epidemiologic approaches in the analysis of gene-environment interaction: case-control studies with no controls!
    • Khoury MJ, Flanders WD. Nontraditional epidemiologic approaches in the analysis of gene-environment interaction: case-control studies with no controls!American Journal of Epidemiology 1996;144:207-213.
    • (1996) American Journal of Epidemiology , vol.144 , pp. 207-213
    • Khoury, M.J.1    Flanders, W.D.2
  • 23
    • 0028089404 scopus 로고
    • Non-hierarchical logistic models and case-only designs for assessing susceptibility in population-based case-control studies
    • Piegorsch WW, Weinberg CR, Taylor JA. Non-hierarchical logistic models and case-only designs for assessing susceptibility in population-based case-control studies. Statistics in Medicine 1994;13:153-162.
    • (1994) Statistics in Medicine , vol.13 , pp. 153-162
    • Piegorsch, W.W.1    Weinberg, C.R.2    Taylor, J.A.3
  • 26
    • 0020963636 scopus 로고
    • Tests for interaction in epidemiologic studies: a review and a study of power
    • Greenland S. Tests for interaction in epidemiologic studies: a review and a study of power. Statistics in Medicine 1983;2:243-251.
    • (1983) Statistics in Medicine , vol.2 , pp. 243-251
    • Greenland, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.