메뉴 건너뛰기




Volumn , Issue , 2012, Pages 533-539

An effective unsupervised network anomaly detection method

Author keywords

anomaly; cluster; cluster stability; ensemble; intrusion; unsupervised

Indexed keywords

ANOMALY; CLUSTER; CLUSTER STABILITY; ENSEMBLE; INTRUSION; UNSUPERVISED;

EID: 84866068108     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2345396.2345484     Document Type: Conference Paper
Times cited : (37)

References (30)
  • 1
    • 34250315640 scopus 로고    scopus 로고
    • An overview of anomaly detection techniques: Existing solutions and latest technological trends
    • A. Patcha and J. M. Park. An overview of anomaly detection techniques: Existing solutions and latest technological trends. Computer Networks, 51(12):3448-3470, 2007.
    • (2007) Computer Networks , vol.51 , Issue.12 , pp. 3448-3470
    • Patcha, A.1    Park, J.M.2
  • 2
    • 79251595062 scopus 로고    scopus 로고
    • Using clustering to improve the KNN-based classifiers for online anomaly network traffic identification
    • March
    • M.-Y. Su. Using clustering to improve the KNN-based classifiers for online anomaly network traffic identification. J. Netw. Comput. Appl., 34(2):722-730, March 2011.
    • (2011) J. Netw. Comput. Appl. , vol.34 , Issue.2 , pp. 722-730
    • Su, M.-Y.1
  • 3
    • 34447639073 scopus 로고    scopus 로고
    • A new approach to intrusion detection based on an evolutionary soft computing model using neuro-fuzzy classifiers
    • July
    • A. N. Toosi and M. Kahani. A new approach to intrusion detection based on an evolutionary soft computing model using neuro-fuzzy classifiers. Comput. Commun., 30(10):2201-2212, July 2007.
    • (2007) Comput. Commun. , vol.30 , Issue.10 , pp. 2201-2212
    • Toosi, A.N.1    Kahani, M.2
  • 9
    • 84868695480 scopus 로고    scopus 로고
    • Unsupervised anomaly detection in network intrusion detection using clusters
    • Darlinghurst, Australia, Australia, Australian Computer Society, Inc.
    • K. Leung and C. Leckie. Unsupervised anomaly detection in network intrusion detection using clusters. In Proceedings of the Twenty-eighth Australasian conference on Computer Science - Volume 38, pages 333-342, Darlinghurst, Australia, Australia, 2005. Australian Computer Society, Inc.
    • (2005) Proceedings of the Twenty-eighth Australasian Conference on Computer Science , vol.38 , pp. 333-342
    • Leung, K.1    Leckie, C.2
  • 11
    • 33644860127 scopus 로고    scopus 로고
    • A clustering-based method for unsupervised intrusion detections
    • May
    • S. Jiang, X. Song, H. Wang, J.-J. Han, and Q.-H. Li. A clustering-based method for unsupervised intrusion detections. Pattern Recogn. Lett., 27(7):802-810, May 2006.
    • (2006) Pattern Recogn. Lett. , vol.27 , Issue.7 , pp. 802-810
    • Jiang, S.1    Song, X.2    Wang, H.3    Han, J.-J.4    Li, Q.-H.5
  • 13
    • 84858698273 scopus 로고    scopus 로고
    • Unsupervised network intrusion detection systems: Detecting the unknown without knowledge
    • Jan
    • P. Casas, J. Mazel, and P. Owezarski. Unsupervised network intrusion detection systems: Detecting the unknown without knowledge. Computer Communications, Jan 2012.
    • (2012) Computer Communications
    • Casas, P.1    Mazel, J.2    Owezarski, P.3
  • 14
    • 2442611856 scopus 로고    scopus 로고
    • Stability-based validation of clustering solutions
    • June
    • T. Lange, V. Roth, M. L. Braun, and J. M. Buhmann. Stability-based validation of clustering solutions. Neural Comput., 16(6):1299-1323, June 2004.
    • (2004) Neural Comput. , vol.16 , Issue.6 , pp. 1299-1323
    • Lange, T.1    Roth, V.2    Braun, M.L.3    Buhmann, J.M.4
  • 15
    • 33746099301 scopus 로고    scopus 로고
    • A sober look at clustering stability
    • S. Ben-David, U. v. Luxburg, and D. Pál. A sober look at clustering stability. In COLT, pages 5-19, 2006.
    • (2006) COLT , pp. 5-19
    • Ben-David, S.1    Luxburg, U.V.2    Pál, D.3
  • 18
    • 84866086336 scopus 로고    scopus 로고
    • An ensemble method for validation of cluster analysis
    • September
    • S. Jun. An ensemble method for validation of cluster analysis. International Journal of Computer Science Issues, 8(6):26-30, September 2011.
    • (2011) International Journal of Computer Science Issues , vol.8 , Issue.6 , pp. 26-30
    • Jun, S.1
  • 20
    • 84941155240 scopus 로고
    • Well separated clusters and optimal fuzzy partitions
    • J. Dunn. Well separated clusters and optimal fuzzy partitions. Journal of Cybernetics, 4:95-104, 1974.
    • (1974) Journal of Cybernetics , vol.4 , pp. 95-104
    • Dunn, J.1
  • 23
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20(1):53-65, 1987.
    • (1987) Journal of Computational and Applied Mathematics , vol.20 , Issue.1 , pp. 53-65
    • Rousseeuw, P.J.1
  • 25
    • 78649934709 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Sciences, Irvine, CA
    • A. Frank and A. Asuncion. UCI Machine Learning Repository [http://archive.ics.uci.edu/ml], 2010. University of California, School of Information and Computer Sciences, Irvine, CA.
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 26
    • 84866074543 scopus 로고    scopus 로고
    • TUIDS12. May04
    • TUIDS12. TUIDS network intrusion datasets. http://tezu.ernet.in/~dkb/ resource.html,May04,2012.
    • (2012) TUIDS Network Intrusion Datasets
  • 27
    • 79952963997 scopus 로고    scopus 로고
    • October 28
    • KDDCUP99. Winning strategy in KDD99. http://kdd.ics.uci.edu/databases/ kddcup99/kddcup99.html, October 28 1999.
    • (1999) Winning Strategy in KDD99
  • 28
    • 79952952185 scopus 로고    scopus 로고
    • Critical study of supervised learning techniques in predicting attacks
    • R. Beghdad. Critical study of supervised learning techniques in predicting attacks. Information Security Journal: A Global Perspective, 19(1):22-35, 2010.
    • (2010) Information Security Journal: A Global Perspective , vol.19 , Issue.1 , pp. 22-35
    • Beghdad, R.1
  • 29
    • 68949161842 scopus 로고    scopus 로고
    • A triangle area based nearest neighbors approach to intrusion detection
    • January
    • C.-F. Tsai and C.-Y. Lin. A triangle area based nearest neighbors approach to intrusion detection. Pattern Recogn., 43(1):222-229, January 2010.
    • (2010) Pattern Recogn. , vol.43 , Issue.1 , pp. 222-229
    • Tsai, C.-F.1    Lin, C.-Y.2
  • 30
    • 77956613687 scopus 로고    scopus 로고
    • A novel intrusion detection system based on hierarchical clustering and support vector machines
    • January
    • S. J. Horng, M. Y. Su, Y. H. Chen, T. W. Kao, R. J. Chen, J. L. Lai, and C. D. Perkasa. A novel intrusion detection system based on hierarchical clustering and support vector machines. Expert Syst. Appl., 38(1):306-313, January 2011.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.1 , pp. 306-313
    • Horng, S.J.1    Su, M.Y.2    Chen, Y.H.3    Kao, T.W.4    Chen, R.J.5    Lai, J.L.6    Perkasa, C.D.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.