-
6
-
-
33748919061
-
Application of He’s homotopy-prturbation method to nonlinear coupled systems of reaction-diffusion equations
-
Ganji, D. D. and A. Sadighi, “Application of He’s homotopy-prturbation method to nonlinear coupled systems of reaction-diffusion equations,” Int. J. Nonl. Sci. and Num. Simu, Vol. 7, No. 4, 411–418, 2006.
-
(2006)
Int. J. Nonl. Sci. and Num. Simu
, vol.7
, Issue.4
, pp. 411-418
-
-
Ganji, D.D.1
Sadighi, A.2
-
7
-
-
1242287587
-
The homotopy perturbation method for nonlinear oscillators with discontinuities
-
He, J. H., “The homotopy perturbation method for nonlinear oscillators with discontinuities,” Applied Mathematics and Computation, Vol. 151, 287–292, 2004.
-
(2004)
Applied Mathematics and Computation
, vol.151
, pp. 287-292
-
-
He, J.H.1
-
8
-
-
36048963233
-
Application of a modified He’s homotopy perturbation method to obtain higher-order approximations of an force nonlinear oscillator
-
Beléndez, A., C. Pascual, S. Gallego, M. Ortuño, and C. Neipp, “Application of a modified He’s homotopy perturbation method to obtain higher-order approximations of an force nonlinear oscillator,” Physics Letters A, Vol. 371, 421–426, 2007.
-
(2007)
Physics Letters A
, vol.371
, pp. 421-426
-
-
Beléndez, A.1
Pascual, C.2
Gallego, S.3
Ortuño, M.4
Neipp, C.5
-
9
-
-
55149083120
-
An approximation of the analytical solution of the linear and nonlinear integro-differential equations by homotopy perturbation method
-
Alizadeh, S. R. S., G. Domairry, and S. Karimpour, “An approximation of the analytical solution of the linear and nonlinear integro-differential equations by homotopy perturbation method,” Acta Applicandae Mathematicae, doi: 10.1007/s10440-008-9261-z.
-
Acta Applicandae Mathematicae
-
-
Alizadeh, S.R.S.1
Domairry, G.2
Karimpour, S.3
-
10
-
-
0036489498
-
Modified Lindstedt-Poincare methods for some strongly nonlinear oscillations, Part I: Expansion of a constant
-
He, J. H., “Modified Lindstedt-Poincare methods for some strongly nonlinear oscillations, Part I: Expansion of a constant,” International Journal Non-linear Mechanic, Vol. 37, 309–314, 2002.
-
(2002)
International Journal Non-Linear Mechanic
, vol.37
, pp. 309-314
-
-
He, J.H.1
-
11
-
-
0035603591
-
Modified Lindstedt-Poincare methods for some strongly nonlinear oscillations. Part III: Double series expansion
-
He, J. H., “Modified Lindstedt-Poincare methods for some strongly nonlinear oscillations. Part III: Double series expansion,” International Journal Non-linear Science and Numerical Simulation, Vol. 2, 317–320, 2001.
-
(2001)
International Journal Non-Linear Science and Numerical Simulation
, vol.2
, pp. 317-320
-
-
He, J.H.1
-
12
-
-
33846210009
-
1/3 force by He’s modified Lindstedt-Poincare method
-
1/3 force by He’s modified Lindstedt-Poincare method,” Journal of Sound and Vibration, Vol. 301, 415–419, 2007.
-
(2007)
Journal of Sound and Vibration
, vol.301
, pp. 415-419
-
-
Özis, T.1
Yildirim, A.2
-
13
-
-
34748917561
-
Nonlinear oscillator with discontinuity by parameter-expansion method
-
Wang, S. Q. and J. H. He, “Nonlinear oscillator with discontinuity by parameter-expansion method,” Chaos & Soliton and Fractals, Vol. 35, 688–691, 2008.
-
(2008)
Chaos & Soliton and Fractals
, vol.35
, pp. 688-691
-
-
Wang, S.Q.1
He, J.H.2
-
14
-
-
33645972898
-
Some asymptotic methods for strongly nonlinear equations
-
He, J. H., “Some asymptotic methods for strongly nonlinear equations,” International Journal Modern Physic B, Vol. 20, 1141–1199, 2006.
-
(2006)
International Journal Modern Physic B
, vol.20
, pp. 1141-1199
-
-
He, J.H.1
-
15
-
-
66349128554
-
Nonlinear oscillator with discontinuity by parameter-expanding method
-
Wang, S. Q. and J. H. He, “Nonlinear oscillator with discontinuity by parameter-expanding method,” Chaos, Solitons & Fractals, Vol. 29, 108–113, 2006; Vol. 35, 688–691, 2008.
-
(2006)
Chaos, Solitons & Fractals
, vol.29
, pp. 108-113
-
-
Wang, S.Q.1
He, J.H.2
-
16
-
-
34249996463
-
Application of parameter-expanding method to strongly nonlinear oscillators
-
Shou, D. H. and J. H. He, “Application of parameter-expanding method to strongly nonlinear oscillators,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 8, No. 1, 121–124, 2007.
-
(2007)
International Journal of Nonlinear Sciences and Numerical Simulation
, vol.8
, Issue.1
, pp. 121-124
-
-
Shou, D.H.1
He, J.H.2
-
17
-
-
0003053851
-
Some new approaches to Duffing equation with strongly and high order nonlinearity (II) parameterized perturbation technique
-
He, J. H., “Some new approaches to Duffing equation with strongly and high order nonlinearity (II) parameterized perturbation technique,” Communications in Nonlinear Science and Numerical Simulation, Vol. 4, 81–82, 1999.
-
(1999)
Communications in Nonlinear Science and Numerical Simulation
, vol.4
, pp. 81-82
-
-
He, J.H.1
-
19
-
-
30344474624
-
Saturation and resonance of nonlinear system under bounded noise excitation
-
Rong, H. W., X. D. Wang, W. Xu, and T. Fang, “Saturation and resonance of nonlinear system under bounded noise excitation,” Journal of Sound and Vibration, Vol. 291, 48–59, 2006.
-
(2006)
Journal of Sound and Vibration
, vol.291
, pp. 48-59
-
-
Rong, H.W.1
Wang, X.D.2
Xu, W.3
Fang, T.4
-
20
-
-
33846309237
-
Free vibration analysis of a rotating beam with nonlinear spring and mass system
-
Das, S. K., P. C. Ray, and G. Pohit, “Free vibration analysis of a rotating beam with nonlinear spring and mass system,” Journal of Sound and Vibration, Vol. 301, 165–188, 2007.
-
(2007)
Journal of Sound and Vibration
, vol.301
, pp. 165-188
-
-
Das, S.K.1
Ray, P.C.2
Pohit, G.3
-
21
-
-
2142699367
-
Multiple time scale analysis of hysteretic systems subjected to harmonic excitation
-
Okuizumi, N. and K. Kimura, “Multiple time scale analysis of hysteretic systems subjected to harmonic excitation,” Journal of Sound and Vibration, Vol. 272, 675–701, 2004.
-
(2004)
Journal of Sound and Vibration
, vol.272
, pp. 675-701
-
-
Okuizumi, N.1
Kimura, K.2
-
22
-
-
33644556136
-
Wave attenuation in nonlinear periodic structures using harmonic balance and multiple scales
-
Marathe, A., “Anindya Chatterjee, wave attenuation in nonlinear periodic structures using harmonic balance and multiple scales,” Journal of Sound and Vibration, Vol. 289, 871–888, 2006.
-
(2006)
Journal of Sound and Vibration
, vol.289
, pp. 871-888
-
-
Marathe, A.1
Chatterjee, A.2
-
23
-
-
33746283765
-
Harmonic balance approach to limit cycles for nonlinear jerk equations
-
Gottlieb, H. P. W., “Harmonic balance approach to limit cycles for nonlinear jerk equations,” Journal of Sound and Vibration, Vol. 297, 243–250, 2006.
-
(2006)
Journal of Sound and Vibration
, vol.297
, pp. 243-250
-
-
Gottlieb, H.P.W.1
-
24
-
-
33749267774
-
External and internal coupling effects of rotor’s bending and torsional vibrations under unbalances
-
Yuan, Z. W., F. L. Chu, and Y. L. Lin, “External and internal coupling effects of rotor’s bending and torsional vibrations under unbalances,” Journal of Sound and Vibration, Vol. 299, 339–347, 2007.
-
(2007)
Journal of Sound and Vibration
, vol.299
, pp. 339-347
-
-
Yuan, Z.W.1
Chu, F.L.2
Lin, Y.L.3
-
26
-
-
38349161622
-
Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis
-
Penga, Z. K., Z. Q. Langa, S. A. Billingsa, and G. R. Tomlinson, “Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis,” Journal of Sound and Vibration, Vol. 311, 56–73, 2008.
-
(2008)
Journal of Sound and Vibration
, vol.311
, pp. 56-73
-
-
Penga, Z.K.1
Langa, Z.Q.2
Billingsa, S.A.3
Tomlinson, G.R.4
-
27
-
-
62949231085
-
Determination of limit cycles for strongly nonlinear oscillators
-
He, J. H., “Determination of limit cycles for strongly nonlinear oscillators,” Physic Review Letter, Vol. 90, 174–181, 2006.
-
(2006)
Physic Review Letter
, vol.90
, pp. 174-181
-
-
He, J.H.1
-
28
-
-
62949117479
-
Periodic solution for strongly nonlinear vibration systems by energy balance method
-
Ganji, S. S., S. Karimpour, D. D. Ganji, and Z. Z. Ganji, “Periodic solution for strongly nonlinear vibration systems by energy balance method,” Acta Applicandae Mathematicae, doi: 10.1007/s10440-008-9283-6.
-
Acta Applicandae Mathematicae
-
-
Ganji, S.S.1
Karimpour, S.2
Ganji, D.D.3
Ganji, Z.Z.4
-
29
-
-
0036526626
-
Preliminary report on the energy balance for nonlinear oscillations
-
He, J. H., “Preliminary report on the energy balance for nonlinear oscillations,” Mechanics Research Communications, Vol. 29, 107– 118, 2002.
-
(2002)
Mechanics Research Communications
, vol.29
, pp. 107-118
-
-
He, J.H.1
-
30
-
-
34748902823
-
Determination of the frequency-amplitude relation for a Duffing-harmonic oscillator by the energy balance method
-
Özis, T. and A. Yildirim, “Determination of the frequency-amplitude relation for a Duffing-harmonic oscillator by the energy balance method,” Computers and Mathematics with Applications, Vol. 54, 1184–1187, 2007.
-
(2007)
Computers and Mathematics with Applications
, vol.54
, pp. 1184-1187
-
-
Özis, T.1
Yildirim, A.2
-
31
-
-
34748902823
-
Determination of the frequency-amplitude relation for a Duffing-harmonic oscillator by the energy balance method
-
Porwal, R. and N. S. Vyas, “Determination of the frequency-amplitude relation for a Duffing-harmonic oscillator by the energy balance method,” Computers and Mathematics with Applications, Vol. 54, 1184–1187, 2007.
-
(2007)
Computers and Mathematics with Applications
, vol.54
, pp. 1184-1187
-
-
Porwal, R.1
Vyas, N.S.2
-
32
-
-
0000092673
-
Variational iteration method — A kind of nonlinear analytical technique: Some examples
-
He, J. H., “Variational iteration method — A kind of nonlinear analytical technique: Some examples,” Int JNonlinear Mech., Vol. 34, 699–708, 1999.
-
(1999)
Int Jnonlinear Mech
, vol.34
, pp. 699-708
-
-
He, J.H.1
-
33
-
-
34447517053
-
The variational iteration method for nonlinear oscillators with discontinuities
-
Rafei, M., D. D. Ganji, H. Daniali, and H. Pashaei, “The variational iteration method for nonlinear oscillators with discontinuities,” Journal of Sound and Vibration, Vol. 305, 614– 620, 2007.
-
(2007)
Journal of Sound and Vibration
, vol.305
, pp. 614-620
-
-
Rafei, M.1
Ganji, D.D.2
Daniali, H.3
Pashaei, H.4
-
34
-
-
30344475545
-
Construction of solitary solution and compaction-like solution by variational iteration method
-
He, J. H. and X. H. Wu, “Construction of solitary solution and compaction-like solution by variational iteration method,” Chaos, Solitons & Fractals, Vol. 29, 108–113, 2006.
-
(2006)
Chaos, Solitons & Fractals
, vol.29
, pp. 108-113
-
-
He, J.H.1
Wu, X.H.2
-
35
-
-
35148837299
-
He’s variational iteration method for solving a semi-linear inverse parabolic equation
-
Varedi, S. M., M. J. Hosseini, M. Rahimi, and D. D. Ganji, “He’s variational iteration method for solving a semi-linear inverse parabolic equation,” Physics Letters A, Vol. 370, 275–280, 2007.
-
(2007)
Physics Letters A
, vol.370
, pp. 275-280
-
-
Varedi, S.M.1
Hosseini, M.J.2
Rahimi, M.3
Ganji, D.D.4
-
36
-
-
85041799514
-
-
Istanbul Conferences, Torque, accepted
-
Hashemi, S. H. A., K. N. Tolou, A. Barari, and A. J. Choobbasti, “On the approximate explicit solution of linear and nonlinear non-homogeneous dissipative wave equations,” Istanbul Conferences, Torque, accepted, 2008.
-
(2008)
On the Approximate Explicit Solution of Linear and Nonlinear Non-Homogeneous Dissipative Wave Equations
-
-
Hashemi, S.H.A.1
Tolou, K.N.2
Barari, A.3
Choobbasti, A.J.4
-
37
-
-
34250213225
-
Variational approach for nonlinear oscillators
-
He, J. H., “Variational approach for nonlinear oscillators,” Chaos, Solitons and Fractals, Vol. 34, 1430–1439, 2007.
-
(2007)
Chaos, Solitons and Fractals
, vol.34
, pp. 1430-1439
-
-
He, J.H.1
-
38
-
-
84989339824
-
Variational approach method for nonlinear oscillations of the motion of a rigid rod rocking back and cubic-quintic Duffing oscillators
-
Ganji, S. S., D. D. Ganji, H. Babazadeh, and S. Karimpour, “Variational approach method for nonlinear oscillations of the motion of a rigid rod rocking back and cubic-quintic Duffing oscillators,” Progress In Electromagnetics Research M, Vol. 4, 23– 32, 2008.
-
(2008)
Progress in Electromagnetics Research M
, vol.4
, pp. 23-32
-
-
Ganji, S.S.1
Ganji, D.D.2
Babazadeh, H.3
Karimpour, S.4
-
39
-
-
33748560163
-
Variational approach to higher-order water-wave equations
-
Wu, Y., “Variational approach to higher-order water-wave equations,” Chaos & Solitons and Fractals, Vol. 32, 195–203, 2007.
-
(2007)
Chaos & Solitons and Fractals
, vol.32
, pp. 195-203
-
-
Wu, Y.1
-
40
-
-
39149143060
-
Variational approach to solitons of nonlinear dispersive equations
-
Xu, L., “Variational approach to solitons of nonlinear dispersive equations,” Chaos, Solitons & Fractals, Vol. 37, 137–143, 2008.
-
(2008)
Chaos, Solitons & Fractals
, vol.37
, pp. 137-143
-
-
Xu, L.1
|