-
4
-
-
0032672778
-
Homotopy perturbation technique, computer methods
-
J.H. He 1999 Homotopy perturbation technique, computer methods Appl. Mech. Eng. 178 257 262
-
(1999)
Appl. Mech. Eng.
, vol.178
, pp. 257-262
-
-
He, J.H.1
-
5
-
-
1242287587
-
The homotopy perturbation method for nonlinear oscillators with discontinuities
-
J.H. He 2004 The homotopy perturbation method for nonlinear oscillators with discontinuities Appl. Math. Comput. 151 287 292
-
(2004)
Appl. Math. Comput.
, vol.151
, pp. 287-292
-
-
He, J.H.1
-
6
-
-
34548456929
-
Numerical simulation of the generalized Huxley equation by He's homotopy perturbation method
-
S.H. Hashemi K.H.R.M. Daniali D.D. Ganji 2007 Numerical simulation of the generalized Huxley equation by He's homotopy perturbation method Appl. Math. Comput. 192 157 161
-
(2007)
Appl. Math. Comput.
, vol.192
, pp. 157-161
-
-
Hashemi, S.H.1
Daniali, K.H.R.M.2
Ganji, D.D.3
-
7
-
-
33748919061
-
Application of He's homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations
-
D.D. Ganji A. Sadighi 2006 Application of He's homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations Int. J. Non-Linear Sci. Numer. Simul. 7 4 411 418
-
(2006)
Int. J. Non-Linear Sci. Numer. Simul.
, vol.7
, Issue.4
, pp. 411-418
-
-
Ganji, D.D.1
Sadighi, A.2
-
9
-
-
0036489498
-
Modified Lindstedt-Poincare methods for some strongly nonlinear oscillations. Part I: Expansion of a constant
-
J.H. He 2002 Modified Lindstedt-Poincare methods for some strongly nonlinear oscillations. Part I: Expansion of a constant Int. J. Non-Linear Mech. 37 309 314
-
(2002)
Int. J. Non-Linear Mech.
, vol.37
, pp. 309-314
-
-
He, J.H.1
-
10
-
-
0035603591
-
Modified Lindstedt-Poincare methods for some strongly nonlinear oscillations. Part III: Double series expansion
-
J.H. He 2001 Modified Lindstedt-Poincare methods for some strongly nonlinear oscillations. Part III: Double series expansion Int. J. Non-Linear Sci. Numer. Simul. 2 317 320
-
(2001)
Int. J. Non-Linear Sci. Numer. Simul.
, vol.2
, pp. 317-320
-
-
He, J.H.1
-
11
-
-
34748917561
-
Nonlinear oscillator with discontinuity by parameter-expansion method
-
S.Q. Wang J.H. He 2008 Nonlinear oscillator with discontinuity by parameter-expansion method Chaos Solitons Fractals 35 688 691
-
(2008)
Chaos Solitons Fractals
, vol.35
, pp. 688-691
-
-
Wang, S.Q.1
He, J.H.2
-
12
-
-
33645972898
-
Some asymptotic methods for strongly nonlinear equations
-
J.H. He 2006 Some asymptotic methods for strongly nonlinear equations Int. J. Mod. Phys. B 20 1141 1199
-
(2006)
Int. J. Mod. Phys. B
, vol.20
, pp. 1141-1199
-
-
He, J.H.1
-
13
-
-
0003053851
-
Some new approaches to duffing equation with strongly and high order nonlinearity (II) parameterized perturbation technique
-
J.H. He 1999 Some new approaches to duffing equation with strongly and high order nonlinearity (II) parameterized perturbation technique Commun. Non-Linear Sci. Numer. Simul. 4 81 82
-
(1999)
Commun. Non-Linear Sci. Numer. Simul.
, vol.4
, pp. 81-82
-
-
He, J.H.1
-
14
-
-
0002734020
-
A review on some new recently developed nonlinear analytical techniques
-
J.H. He 2000 A review on some new recently developed nonlinear analytical techniques Int. J. Non-Linear Sci. Numer. Simul. 1 51 70
-
(2000)
Int. J. Non-Linear Sci. Numer. Simul.
, vol.1
, pp. 51-70
-
-
He, J.H.1
-
15
-
-
4444377082
-
Determination of limit cycles for strongly nonlinear oscillators
-
J.H. He 2006 Determination of limit cycles for strongly nonlinear oscillators Phys. Rev. Lett. 90 174 181
-
(2006)
Phys. Rev. Lett.
, vol.90
, pp. 174-181
-
-
He, J.H.1
-
16
-
-
26444442005
-
Determination of limit cycles for a modified van der Pol oscillator
-
M. D'Acunto 2006 Determination of limit cycles for a modified van der Pol oscillator Mech. Res. Commun. 33 93 100
-
(2006)
Mech. Res. Commun.
, vol.33
, pp. 93-100
-
-
D'Acunto, M.1
-
17
-
-
0036526626
-
Preliminary report on the energy balance for nonlinear oscillations
-
J.H. He 2002 Preliminary report on the energy balance for nonlinear oscillations Mech. Res. Commun. 29 107 118
-
(2002)
Mech. Res. Commun.
, vol.29
, pp. 107-118
-
-
He, J.H.1
-
18
-
-
0000092673
-
Variational iteration method-a kind of nonlinear analytical technique: Some examples
-
J.H. He 1999 Variational iteration method-a kind of nonlinear analytical technique: some examples Int. J. Non-Linear Mech. 34 699 708
-
(1999)
Int. J. Non-Linear Mech.
, vol.34
, pp. 699-708
-
-
He, J.H.1
-
19
-
-
34447517053
-
The variational iteration method for nonlinear oscillators with discontinuities
-
M. Rafei D.D. Ganji H. Daniali H. Pashaei 2007 The variational iteration method for nonlinear oscillators with discontinuities J. Sound Vib. 305 614 620
-
(2007)
J. Sound Vib.
, vol.305
, pp. 614-620
-
-
Rafei, M.1
Ganji, D.D.2
Daniali, H.3
Pashaei, H.4
-
20
-
-
30344475545
-
Construction of solitary solution and compaction-like solution by variational iteration method
-
J.H. He X.H. Wu 2006 Construction of solitary solution and compaction-like solution by variational iteration method Chaos Solitons Fractals 29 108 113
-
(2006)
Chaos Solitons Fractals
, vol.29
, pp. 108-113
-
-
He, J.H.1
Wu, X.H.2
-
21
-
-
35148837299
-
He's variational iteration method for solving a semi-linear inverse parabolic equation
-
S.M. Varedi M.J. Hosseini M. Rahimi D.D. Ganji 2007 He's variational iteration method for solving a semi-linear inverse parabolic equation Phys. Lett. A 370 275 280
-
(2007)
Phys. Lett. A
, vol.370
, pp. 275-280
-
-
Varedi, S.M.1
Hosseini, M.J.2
Rahimi, M.3
Ganji, D.D.4
-
22
-
-
62949243165
-
On the approximate explicit solution of linear and non-linear non-homogeneous dissipative wave equations
-
Torque, accepted
-
Hashemi, S.H., Tolou, K.N., Barari, A., Choobbasti, A.J.: On the approximate explicit solution of linear and non-linear non-homogeneous dissipative wave equations. In: Istanbul Conferences. Torque, accepted (2008)
-
(2008)
Istanbul Conferences
-
-
Hashemi, S.H.1
Tolou, K.N.2
Barari, A.3
Choobbasti, A.J.4
-
23
-
-
34250213225
-
Variational approach for nonlinear oscillators
-
J.H. He 2007 Variational approach for nonlinear oscillators Chaos Solitons Fractals 34 1430 1439
-
(2007)
Chaos Solitons Fractals
, vol.34
, pp. 1430-1439
-
-
He, J.H.1
-
24
-
-
40549098078
-
Analysis of non-linear oscillations systems using analytical approach
-
Naghipour, M., Ganji, D.D., Hashemi, S.H., Jafari, K.: Analysis of non-linear oscillations systems using analytical approach. J. Phys. 96 (2008)
-
(2008)
J. Phys. 96
-
-
Naghipour, M.1
Ganji, D.D.2
Hashemi, S.H.3
Jafari, K.4
-
25
-
-
33748560163
-
Variational approach to higher-order water-wave equations
-
Y. Wu 2007 Variational approach to higher-order water-wave equations Chaos Solitons Fractals 32 195 203
-
(2007)
Chaos Solitons Fractals
, vol.32
, pp. 195-203
-
-
Wu, Y.1
-
26
-
-
39149143060
-
Variational approach to Solitons of nonlinear dispersive K(m,n) equations
-
L. Xu 2008 Variational approach to Solitons of nonlinear dispersive K(m,n) equations Chaos Solitons Fractals 37 137 143
-
(2008)
Chaos Solitons Fractals
, vol.37
, pp. 137-143
-
-
Xu, L.1
-
27
-
-
0006996396
-
General use of the Lagrange multiplier in non-linear mathematical physics
-
Pergamon Press Oxford
-
Inokuti, M., et al.: General use of the Lagrange multiplier in non-linear mathematical physics. In: Nemat-Nasser, S. (ed.) Variational Method in the Mechanics of Solids, pp. 156-162. Pergamon Press, Oxford (1978)
-
(1978)
Variational Method in the Mechanics of Solids
, pp. 156-162
-
-
Inokuti, M.1
Nemat-Nasser, S.2
-
28
-
-
4243080806
-
Generalized variational principles for ion acoustic plasma waves by He's semi-inverse method
-
H.M. Liu 2005 Generalized variational principles for ion acoustic plasma waves by He's semi-inverse method Chaos Solitons Fractals 23 2 573 576
-
(2005)
Chaos Solitons Fractals
, vol.23
, Issue.2
, pp. 573-576
-
-
Liu, H.M.1
-
29
-
-
0041621600
-
Variational principles for some nonlinear partial differential equations with variable coefficient
-
J.H. He 2004 Variational principles for some nonlinear partial differential equations with variable coefficient Chaos Solitons Fractals 19 4 847 851
-
(2004)
Chaos Solitons Fractals
, vol.19
, Issue.4
, pp. 847-851
-
-
He, J.H.1
-
30
-
-
33745664224
-
A modified iteration perturbation method for some nonlinear oscillation problems
-
V. Marinca N. Herisanu 2006 A modified iteration perturbation method for some nonlinear oscillation problems Acta Mech. 184 231 242
-
(2006)
Acta Mech.
, vol.184
, pp. 231-242
-
-
Marinca, V.1
Herisanu, N.2
-
32
-
-
84989339824
-
Variational approach method for nonlinear oscillations of the motion of a rigid rod rocking back and cubic-quintic duffing oscillators
-
S. S. Ganji D. D. Ganji H. Ganji Babazadeh S. Karimpour 2008 Variational approach method for nonlinear oscillations of the motion of a rigid rod rocking back and cubic-quintic duffing oscillators Prog. Electromagn. Res. M 4 23 32
-
(2008)
Prog. Electromagn. Res. M
, vol.4
, pp. 23-32
-
-
Ganji, S.S.1
Ganji, D.D.2
Ganji, H.3
Babazadeh4
Karimpour, S.5
-
34
-
-
0001558206
-
Periodic solutions of the relativistic harmonic oscillator
-
R.E. Mickens 1998 Periodic solutions of the relativistic harmonic oscillator J. Sound Vib. 212 905 908
-
(1998)
J. Sound Vib.
, vol.212
, pp. 905-908
-
-
Mickens, R.E.1
-
35
-
-
34447524945
-
A convenient technique for evaluating angular frequency in some nonlinear oscillations
-
Y.Z. Chen X.Y. Lin 2007 A convenient technique for evaluating angular frequency in some nonlinear oscillations J. Sound Vib. 305 552 562
-
(2007)
J. Sound Vib.
, vol.305
, pp. 552-562
-
-
Chen, Y.Z.1
Lin, X.Y.2
-
36
-
-
34147185193
-
Nonlinear dynamic response of MDOF systems by the method of harmonic differential quadrature (HDQ)
-
Ö. Civalek 2007 Nonlinear dynamic response of MDOF systems by the method of harmonic differential quadrature (HDQ) Int. J. Struct. Eng. Mech. 25 2 201 217
-
(2007)
Int. J. Struct. Eng. Mech.
, vol.25
, Issue.2
, pp. 201-217
-
-
Civalek O.̈1
-
37
-
-
0035961282
-
Solving initial value problems by differential quadrature method. Part 1: First-order equations
-
T.C. Fung 2001 Solving initial value problems by differential quadrature method. Part 1: First-order equations Int. J. Numer. Methods Eng. 50 1411 1427
-
(2001)
Int. J. Numer. Methods Eng.
, vol.50
, pp. 1411-1427
-
-
Fung, T.C.1
-
38
-
-
0037127131
-
Stability and accuracy of differential quadrature method in solving dynamic problems
-
T.C. Fung 2002 Stability and accuracy of differential quadrature method in solving dynamic problems Comput. Methods Appl. Mech. Eng. 191 13-14 1311 1331
-
(2002)
Comput. Methods Appl. Mech. Eng.
, vol.191
, Issue.1314
, pp. 1311-1331
-
-
Fung, T.C.1
|