-
3
-
-
0035603591
-
Modified Lindstedt-Poincare methods for some strongly nonlinear oscillations. Part III: Double series expansion
-
He, J. H., “Modified Lindstedt-Poincare methods for some strongly nonlinear oscillations. Part III: Double series expansion,” International Journal Non-linear Science and Numerical Simulation, Vol. 2, 317, 2001.
-
(2001)
International Journal Non-Linear Science and Numerical Simulation
, vol.2
, Issue.317
-
-
He, J.H.1
-
4
-
-
0033742886
-
Anew perturbation technique which is also valid for large parameters
-
He, J. H., “Anew perturbation technique which is also valid for large parameters,” J. Sound Vib., Vol. 229, 1257, 2000.
-
(2000)
J. Sound Vib
, vol.229
, pp. 1257
-
-
He, J.H.1
-
5
-
-
18844426016
-
Application of homotopy perturbation method to nonlinear wave equations
-
He, J. H., “Application of homotopy perturbation method to nonlinear wave equations,” Chaos, Solitons and Fractals, Vol. 26, 695, 2005.
-
(2005)
Chaos, Solitons and Fractals
, vol.26
, pp. 695
-
-
He, J.H.1
-
6
-
-
0036489498
-
Modified Lindstedt-Poincare methods for some strongly nonlinear oscillations, Part I: Expansion of a constant
-
He, J. H., “Modified Lindstedt-Poincare methods for some strongly nonlinear oscillations, Part I: Expansion of a constant,” Int. J. Nonlinear Mech., Vol. 37, 309, 2002.
-
(2002)
Int. J. Nonlinear Mech.
, vol.37
, pp. 309
-
-
He, J.H.1
-
7
-
-
0036489502
-
Modified Lindstedt-Poincare methods for some strongly nonlinear oscillations
-
He, J. H., “Modified Lindstedt-Poincare methods for some strongly nonlinear oscillations. Part II: Anew transformation,” Int. J. Nonlinear Mech., Vol. 37, 315, 2002.
-
(2002)
Part II: Anew transformation,” Int. J. Nonlinear Mech
, vol.37
, pp. 315
-
-
He, J.H.1
-
8
-
-
30644460357
-
Homotopy perturbation method for solving boundary value problems
-
He, J. H., “Homotopy perturbation method for solving boundary value problems,” Phys Lett A, Vol. 350, 87, 2006.
-
(2006)
Phys Lett A
, vol.350
, pp. 87
-
-
He, J.H.1
-
9
-
-
33645972898
-
Some asymptotic methods for strongly nonlinear equations
-
He, J. H., “Some asymptotic methods for strongly nonlinear equations,” Int. J. Mod. Phys. B, Vol. 20, 1141–1199, 2006.
-
(2006)
Int. J. Mod. Phys. B
, vol.20
, pp. 1141-1199
-
-
He, J.H.1
-
10
-
-
33746584753
-
New interpretation of homotopy perturbation method
-
He, J. H., “New interpretation of homotopy perturbation method,” Int. J. Mod. Phys. B, Vol. 20, 2561, 2006.
-
(2006)
Int. J. Mod. Phys. B
, vol.20
, pp. 2561
-
-
He, J.H.1
-
11
-
-
1242287587
-
The homotopy perturbation method for nonlinear oscillators with discontinuities
-
He, J. H., “The homotopy perturbation method for nonlinear oscillators with discontinuities,” Appl. Math. Comput., Vol. 151, 287, 2004.
-
(2004)
Appl. Math. Comput.
, vol.151
, pp. 287
-
-
He, J.H.1
-
12
-
-
33748919061
-
Application of He’s homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations
-
Ganji, D. D. and A. Sadighi, “Application of He’s homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations,” Int. J. Nonlinear Sci. Numer. Simul., Vol. 7, No. 4, 411, 2006.
-
(2006)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.7
, Issue.4
, pp. 411
-
-
Ganji, D.D.1
Sadighi, A.2
-
13
-
-
33745965279
-
Explicit solutions of Helmholtz equation and fifth-order KdV equation using homotopy perturubation method
-
Rafei, M. and D. D. Ganji, “Explicit solutions of Helmholtz equation and fifth-order KdV equation using homotopy perturubation method,” Int. J. Nonlinear Sci. Numer. Simul., Vol. 7, No. 3, 321, 2006.
-
(2006)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.7
, Issue.3
, pp. 321
-
-
Rafei, M.1
Ganji, D.D.2
-
14
-
-
33646893481
-
The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer
-
Ganji, D. D., “The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer,” Phys. Lett., Vol. 355, 337, 2006.
-
(2006)
Phys. Lett
, vol.355
, pp. 337
-
-
Ganji, D.D.1
-
15
-
-
55149083120
-
An approximation of the analytical solution of the linear and nonlinear integro-differential equations by homotopy perturbation method
-
Alizadeh, S. R. S., G. Domairry, and S. Karimpour, “An approximation of the analytical solution of the linear and nonlinear integro-differential equations by homotopy perturbation method,” Acta Applicandae Mathematicae, doi: 10.1007/s10440-008-9261-z.
-
Acta Applicandae Mathematicae
-
-
Alizadeh, S.R.S.1
Domairry, G.2
Karimpour, S.3
-
16
-
-
33746283765
-
Harmonic balance approach to limit cycles for nonlinear jerk equations
-
Gottlieb, H. P. W., “Harmonic balance approach to limit cycles for nonlinear jerk equations,” J. Sound Vib., Vol. 297, 243, 2006.
-
(2006)
J. Sound Vib
, vol.297
, pp. 243
-
-
Gottlieb, H.P.W.1
-
17
-
-
33745979117
-
Higher accuracy analytical approximations to the Duffing-harmonic oscillator
-
Lim, C. W., B. S. Wu, and W. P. Sun, “Higher accuracy analytical approximations to the Duffing-harmonic oscillator,” J. Sound Vib., Vol. 296, 1039, 2006.
-
(2006)
J. Sound Vib
, vol.296
, pp. 1039
-
-
Lim, C.W.1
Wu, B.S.2
Sun, W.P.3
-
18
-
-
43049085115
-
Harmonic balance approaches to the nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable
-
Beléndez, A., A. Márquez, T. Beléndez, A. Hernández, and M. L. Alvarez, “Harmonic balance approaches to the nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable,” Journal of Sound and Vibration, Vol. 314, 775, 2008.
-
(2008)
Journal of Sound and Vibration
, vol.314
, Issue.775
-
-
Beléndez, A.1
Márquez, A.2
Beléndez, T.3
Hernández, A.4
Alvarez, M.L.5
-
19
-
-
33947270453
-
Application of the harmonic balance method to a nonlinear oscillator typified by a mass attached to a stretched wire
-
Beléndez, A., A. Hernández, T. Beléndez, M. L. Álvarez, S. Gallego, M. Ortuño, and C. Neipp, “Application of the harmonic balance method to a nonlinear oscillator typified by a mass attached to a stretched wire,” J. Sound Vib., Vol. 302, 1018, 2007.
-
(2007)
J. Sound Vib
, vol.302
, pp. 1018
-
-
Beléndez, A.1
Hernández, A.2
Beléndez, T.3
Álvarez, M.L.4
Gallego, S.5
Ortuño, M.6
Neipp, C.7
-
20
-
-
33646528864
-
Solution of a Duffing-harmonic oscillator by the method of harmonic balance
-
Hu, H. and J. H. Tang, “Solution of a Duffing-harmonic oscillator by the method of harmonic balance,” J. Sound Vib., Vol. 294, 637, 2006.
-
(2006)
J. Sound Vib
, vol.294
, pp. 637
-
-
Hu, H.1
Tang, J.H.2
-
21
-
-
33646528864
-
Solution of a quadratic nonlinear oscillator by the method of harmonic balance
-
Hu, H., “Solution of a quadratic nonlinear oscillator by the method of harmonic balance,” J. Sound Vib., Vol. 293, 462, 2006.
-
(2006)
J. Sound Vib
, vol.293
, Issue.462
-
-
Hu, H.1
-
22
-
-
23144432847
-
On period doubling bifurcations of cycles and the harmonic balance method
-
Itovich, G. R. and J. L. Moiola, “On period doubling bifurcations of cycles and the harmonic balance method,” Chaos Solitons Fractals, Vol. 27, 647, 2005.
-
(2005)
Chaos Solitons Fractals
, vol.27
, pp. 647
-
-
Itovich, G.R.1
Moiola, J.L.2
-
23
-
-
38349161622
-
Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis
-
Penga, Z. K., Z. Q. Langa, S. A. Billingsa, and G. R. Tomlinson, “Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis,” J. Sound Vib., Vol. 311, 56, 2008.
-
(2008)
J. Sound Vib
, vol.311
, pp. 56
-
-
Penga, Z.K.1
Langa, Z.Q.2
Billingsa, S.A.3
Tomlinson, G.R.4
-
24
-
-
4444377082
-
Determination of limit cycles for strongly nonlinear oscillators
-
He, J. H., “Determination of limit cycles for strongly nonlinear oscillators,” Phys Rev Lett., Vol. 90, 174, 2006.
-
(2006)
Phys Rev Lett.
, vol.90
, pp. 174
-
-
He, J.H.1
-
25
-
-
0036526626
-
Preliminary report on the energy balance for nonlinear oscillations
-
He, J. H., “Preliminary report on the energy balance for nonlinear oscillations,” Mechanics Research Communications, Vol. 29, 107, 2002.
-
(2002)
Mechanics Research Communications
, vol.29
, pp. 107
-
-
He, J.H.1
-
26
-
-
4444377082
-
Determination of limit cycles for strongly nonlinear oscillators
-
He, J. H., “Determination of limit cycles for strongly nonlinear oscillators,” Phys. Rev. Lett., Vol. 90, No. 17, 2003 [Art. No. 174301].
-
(2003)
Phys. Rev. Lett
, vol.90
, Issue.17
-
-
He, J.H.1
-
27
-
-
34748902823
-
Determination of the frequency-amplitude relation for a Duffing-harmonic oscillator by the energy balance method
-
Ozis, T. and A. Yildirim, “Determination of the frequency-amplitude relation for a Duffing-harmonic oscillator by the energy balance method,” Comput Math Appl., Vol. 54, 1184, 2007.
-
(2007)
Comput Math Appl
, vol.54
, pp. 1184
-
-
Ozis, T.1
Yildirim, A.2
-
28
-
-
26444442005
-
Determination of limit cycles for a modified van der pol oscillator
-
D’Acunto, M., “Determination of limit cycles for a modified van der pol oscillator,” Mechanics Research Communications, Vol. 33, 93, 2006.
-
(2006)
Mechanics Research Communications
, vol.33
, pp. 93
-
-
D’Acunto, M.1
-
29
-
-
0000092673
-
Variational iteration method — Akind of nonlinear analytical technique: Some examples
-
He, J. H., “Variational iteration method — Akind of nonlinear analytical technique: Some examples,” Int. J. Nonlinear Mech., Vol. 34, 699, 1999.
-
(1999)
Int. J. Nonlinear Mech
, vol.34
, pp. 699
-
-
He, J.H.1
-
30
-
-
30344475545
-
Construction of solitary solution and compaction-like solution by variational iteration method
-
He, J. H. and X. H. Wu, “Construction of solitary solution and compaction-like solution by variational iteration method,” Chaos, Solitons & Fractals, Vol. 29, 108, 2006.
-
(2006)
Chaos, Solitons & Fractals
, vol.29
, pp. 108
-
-
He, J.H.1
Wu, X.H.2
-
31
-
-
34447517053
-
The variational iteration method for nonlinear oscillators with discontinuities
-
Rafei, M., D. D. Ganji, H. Daniali, and H. Pashaei, “The variational iteration method for nonlinear oscillators with discontinuities,” J. Sound Vib., Vol. 305, 614, 2007.
-
(2007)
J. Sound Vib
, vol.305
, pp. 614
-
-
Rafei, M.1
Ganji, D.D.2
Daniali, H.3
Pashaei, H.4
-
32
-
-
34748889862
-
Resonance in Sirospun yarn spinning using a variational iteration method
-
Zhang, L. N. and J. H. He, “Resonance in Sirospun yarn spinning using a variational iteration method,” Computers and Mathematics with Applications, Vol. 54, 1064, 2007.
-
(2007)
Computers and Mathematics with Applications
, vol.54
, pp. 1064
-
-
Zhang, L.N.1
He, J.H.2
-
33
-
-
35148837299
-
He’s variational iteration method for solving a semi-linear inverse parabolic equation
-
Varedi, S. M., M. J. Hosseini, M. Rahimi, and D. D. Ganji, “He’s variational iteration method for solving a semi-linear inverse parabolic equation,” Physics Letters A, Vol. 370, 275, 2007.
-
(2007)
Physics Letters A
, vol.370
, pp. 275
-
-
Varedi, S.M.1
Hosseini, M.J.2
Rahimi, M.3
Ganji, D.D.4
-
34
-
-
85041841043
-
-
Istanbul Conferences, Torque, accepted
-
Hashemi, K. S. H. A., N. Tolou, A. Barari, and A. J. Choobbasti, “On the approximate explicit solution of linear and nonlinear non-homogeneous dissipative wave equations,” Istanbul Conferences, Torque, accepted, 2008.
-
(2008)
On the Approximate Explicit Solution of Linear and Nonlinear Non-Homogeneous Dissipative Wave Equations
-
-
Hashemi, K.S.H.A.1
Tolou, N.2
Barari, A.3
Choobbasti, A.J.4
-
35
-
-
34250213225
-
Variational approach for nonlinear oscillators
-
He, J. H., “Variational approach for nonlinear oscillators,” Chaos, Solitons and Fractals, Vol. 34, 1430, 2007.
-
(2007)
Chaos, Solitons and Fractals
, vol.34
, pp. 1430
-
-
He, J.H.1
-
36
-
-
33748560163
-
Variational approach to higherorder waterwave equations
-
Wu, Y., “Variational approach to higherorder waterwave equations,” Chaos, Solitons and Fractals, Vol. 32, 195, 2007.
-
(2007)
Chaos, Solitons and Fractals
, vol.32
, pp. 195
-
-
Wu, Y.1
-
37
-
-
39149143060
-
Variational approach to solitons of nonlinear dispersive equations
-
Xu, L., “Variational approach to solitons of nonlinear dispersive equations,” Chaos, Solitons & Fractals, Vol. 37, 137, 2008.
-
(2008)
Chaos, Solitons & Fractals
, vol.37
, pp. 137
-
-
Xu, L.1
-
38
-
-
0041621600
-
Variational principles for some nonlinear partial differential equations with variable coefficient
-
He, J. H., “Variational principles for some nonlinear partial differential equations with variable coefficient,” Chaos, Solitons & Fractals, Vol. 19, No. 4, 847, 2004.
-
(2004)
Chaos, Solitons & Fractals
, vol.19
, Issue.4
, pp. 847
-
-
He, J.H.1
-
40
-
-
0037769060
-
Anew method for approximate analytical solutions to nonlinear oscillations of nonnatural systems
-
Wu, B. S., C. W. Lim, and L. H. He, “Anew method for approximate analytical solutions to nonlinear oscillations of nonnatural systems,” Nonlinear Dynamics, Vol. 32, 1, 2003.
-
(2003)
Nonlinear Dynamics
, vol.32
, pp. 1
-
-
Wu, B.S.1
Lim, C.W.2
He, L.H.3
-
41
-
-
0031555687
-
On the large amplitude free vibration of a restrained uniform beam carrying an intermediate lumped mass
-
Hamdan, M. N. and N. H. Shabaneh, “On the large amplitude free vibration of a restrained uniform beam carrying an intermediate lumped mass,” J. Sound Vib., Vol. 199, 711, 1997.
-
(1997)
J. Sound Vib
, vol.199
, pp. 711
-
-
Hamdan, M.N.1
Shabaneh, N.H.2
-
42
-
-
85041840593
-
Newtonharmonic balancing approach for accurate solutions to nonlinear cubicquintic Duffing oscillators
-
Lai, S. K., C. W. Lim, B. S. Wu, C. Wang, Q. C. Zeng, and X. F. He, “Newtonharmonic balancing approach for accurate solutions to nonlinear cubicquintic Duffing oscillators,” Applied Mathematical Modelling, in Press, 2008.
-
(2008)
Applied Mathematical Modelling, in Press
-
-
Lai, S.K.1
Lim, C.W.2
Wu, B.S.3
Wang, C.4
Zeng, Q.C.5
He, X.F.6
|