메뉴 건너뛰기




Volumn 4, Issue 4, 2012, Pages

Radiative heat transfer analysis of a directly irradiated cavity-type solar thermochemical reactor by Monte-Carlo ray tracing

Author keywords

[No Author keywords available]

Indexed keywords

ANGULAR INTENSITY DISTRIBUTION; CAVITY ASPECT RATIO; CAVITY WALL; CERAMIC CAVITIES; DEVELOPED MODEL; ENDOTHERMIC CHEMICAL REACTIONS; FLUX DENSITIES; INNER CAVITIES; LATERAL WALLS; MONTE-CARLO RAY TRACING; RADIATIVE HEAT TRANSFER; RADIATIVE PROPERTIES; REACTIVE PARTICLES; REACTOR DESIGNS; SOLAR IRRADIATION; SOLAR REACTORS; THERMAL REDUCTION; THERMO-CHEMICAL REACTOR; ZNO AND SNO;

EID: 84865765906     PISSN: 19417012     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.4747825     Document Type: Article
Times cited : (16)

References (33)
  • 1
    • 17044439066 scopus 로고    scopus 로고
    • Solar thermochemical production of hydrogen-A review
    • 10.1016/j.solener.2003.12.012
    • A. Steinfeld, Solar thermochemical production of hydrogen-A review., Sol. Energy 78, 603 (2005). 10.1016/j.solener.2003.12.012
    • (2005) Sol. Energy , vol.78 , pp. 603
    • Steinfeld, A.1
  • 2
    • 84355161389 scopus 로고    scopus 로고
    • Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redox reactions
    • 10.1016/j.renene.2011.11.023
    • L. Xiao, S. Y. Wu, and Y. R. Li, Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redox reactions., Renewable Energy 41, 1 (2012). 10.1016/j.renene.2011.11.023
    • (2012) Renewable Energy , vol.41 , pp. 1
    • Xiao, L.1    Wu, S.Y.2    Li, Y.R.3
  • 3
    • 56449117960 scopus 로고    scopus 로고
    • Green path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies
    • 10.1016/j.ijhydene.2008.08.054
    • N. Z. Muradov and T. N. Veziroǧlu, Green path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies., Int. J. Hydrogen Energy 33, 6804 (2008). 10.1016/j.ijhydene.2008.08.054
    • (2008) Int. J. Hydrogen Energy , vol.33 , pp. 6804
    • Muradov, N.Z.1    Veziroǧlu, T.N.2
  • 4
    • 1342332316 scopus 로고    scopus 로고
    • Reflections on the design of solar thermal chemical reactors: Thoughts in transformation
    • DOI 10.1016/S0360-5442(03)00180-4, PII S0360544203001804
    • R. Palumbo, M. Keunecke, S. Möller, and A. Steinfeld, Reflections on the design of solar thermal chemical reactors: Thoughts in transformation., Energy 29, 727 (2004). 10.1016/S0360-5442(03)00180-4 (Pubitemid 38335465)
    • (2004) Energy , vol.29 , Issue.5-6 , pp. 727-744
    • Palumbo, R.1    Keunecke, M.2    Moller, S.3    Steinfeld, A.4
  • 5
    • 79952245260 scopus 로고    scopus 로고
    • Numerical simulation of a tubular solar reactor for methane cracking
    • 10.1016/j.ijhydene.2010.12.022
    • F. J. Valdés-Parada, H. Romero-Paredes, and G. Espinosa-Paredes, Numerical simulation of a tubular solar reactor for methane cracking., Int. J. Hydrogen Energy 36, 3354 (2011). 10.1016/j.ijhydene.2010.12.022
    • (2011) Int. J. Hydrogen Energy , vol.36 , pp. 3354
    • Valdés-Parada, F.J.1    Romero-Paredes, H.2    Espinosa-Paredes, G.3
  • 6
    • 80052025788 scopus 로고    scopus 로고
    • Heat transfer simulation in a thermochemical solar reactor based on a volumetric porous receiver
    • 10.1016/j.applthermaleng.2011.06.022
    • H. I. Villafán-Vidales, S. Abanades, C. Caliot, and H. Romero-Paredes, Heat transfer simulation in a thermochemical solar reactor based on a volumetric porous receiver., Appl. Therm. Eng. 31, 3377 (2011). 10.1016/j.applthermaleng.2011.06.022
    • (2011) Appl. Therm. Eng. , vol.31 , pp. 3377
    • Villafán-Vidales, H.I.1    Abanades, S.2    Caliot, C.3    Romero-Paredes, H.4
  • 7
    • 65649119761 scopus 로고    scopus 로고
    • Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO-Experimental validation at 10 kW and scale-up to 1 MW
    • 10.1016/j.cej.2009.03.012
    • L. O. Schunk, W. Lipiski, and A. Steinfeld, Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO-Experimental validation at 10 kW and scale-up to 1 MW., Chem. Eng. J. 150, 502 (2009). 10.1016/j.cej.2009.03.012
    • (2009) Chem. Eng. J. , vol.150 , pp. 502
    • Schunk, L.O.1    Lipiski, W.2    Steinfeld, A.3
  • 8
    • 78650358283 scopus 로고    scopus 로고
    • 2 powders in a moving-front solar thermochemical reactor
    • 10.1002/aic.12432
    • 2 powders in a moving-front solar thermochemical reactor., AIChE J. 57, 2264 (2011). 10.1002/aic.12432
    • (2011) AIChE J. , vol.57 , pp. 2264
    • Chambon, M.1    Abanades, S.2    Flamant, G.3
  • 10
    • 34948845089 scopus 로고    scopus 로고
    • Design and simulation of a solar chemical reactor for the thermal reduction of metal oxides: Case study of zinc oxide dissociation
    • DOI 10.1016/j.ces.2007.07.042, PII S0009250907005878
    • S. Abanades, P. Charvin, and G. Flamant, Design and simulation of a solar chemical reaction for the thermal reduction of metal oxides: Case study of zinc oxide dissociation., Chem. Eng. Sci. 62, 6323 (2007). 10.1016/j.ces.2007.07.042 (Pubitemid 47516581)
    • (2007) Chemical Engineering Science , vol.62 , Issue.22 , pp. 6323-6333
    • Abanades, S.1    Charvin, P.2    Flamant, G.3
  • 13
    • 84865714626 scopus 로고    scopus 로고
    • Ph.D. dissertation, CIE-UNAM.
    • H. I. Villafán Vidales, Ph.D. dissertation, CIE-UNAM, 2009.
    • (2009)
    • Villafán Vidales, H.I.1
  • 14
    • 17744377398 scopus 로고    scopus 로고
    • Production of hydrogen by thermal methane splitting in a nozzle-type laboratory-scale solar reactor
    • 10.1016/j.ijhydene.2004.09.006
    • S. Abanades and G. Flamant, Production of hydrogen by thermal methane splitting in a nozzle-type laboratory-scale solar reactor., Int. J. Hydrogen Energy 30, 843 (2005). 10.1016/j.ijhydene.2004.09.006
    • (2005) Int. J. Hydrogen Energy , vol.30 , pp. 843
    • Abanades, S.1    Flamant, G.2
  • 15
    • 84858160221 scopus 로고    scopus 로고
    • Numerical study of heat transfer by natural convection and surface thermal radiation in an open cavity receiver
    • 10.1016/j.solener.2012.01.005
    • M. Montiel-Gonzalez, J. Hinojosa-Palafox, and C. A. Estrada, Numerical study of heat transfer by natural convection and surface thermal radiation in an open cavity receiver., Sol. Energy 86, 1118 (2012). 10.1016/j.solener.2012.01. 005
    • (2012) Sol. Energy , vol.86 , pp. 1118
    • Montiel-Gonzalez, M.1    Hinojosa-Palafox, J.2    Estrada, C.A.3
  • 16
    • 57049158139 scopus 로고    scopus 로고
    • Convection and surface radiation heat losses from modified cavity receiver of solar parabolic dish collector with two-stage concentration
    • 10.1007/s00231-008-0440-2
    • K. S. Reddy and N. Sendhil Kumar, Convection and surface radiation heat losses from modified cavity receiver of solar parabolic dish collector with two-stage concentration., Heat Mass Transfer 45, 363 (2009). 10.1007/s00231-008-0440-2
    • (2009) Heat Mass Transfer , vol.45 , pp. 363
    • Reddy, K.S.1    Sendhil Kumar, N.2
  • 17
    • 84865714625 scopus 로고    scopus 로고
    • Ph.D. dissertation, Université de Perpignan.
    • M. Chambon, Ph.D. dissertation, Université de Perpignan, 2010.
    • (2010)
    • Chambon, M.1
  • 19
    • 84865795308 scopus 로고    scopus 로고
    • Glushko Thermocenter, Entropy and Heat Capacity of Organic Compounds (IVTAN Association, Moscow, Russia, 1996).
    • Glushko Thermocenter, Entropy and Heat Capacity of Organic Compounds (IVTAN Association, Moscow, Russia, 1996).
  • 21
    • 54949091459 scopus 로고    scopus 로고
    • 2/SnO/Sn thermochemical system for solar hydrogen production
    • 10.1002/aic.11584
    • 2/SnO/Sn thermochemical system for solar hydrogen production., AIChE J. 54, 2759 (2008). 10.1002/aic.11584
    • (2008) AIChE J. , vol.54 , pp. 2759
    • Charvin, P.1    Abanades, S.2    Lemont, F.3    Flamant, G.4
  • 22
    • 58049218866 scopus 로고    scopus 로고
    • Monte Carlo radiative transfer simulation of a cavity solar reactor for the thermal reduction of cerium oxide
    • 10.1016/j.ijhydene.2008.10.051
    • H. I. Villafán-Vidales, C. A. Arancibia-Bulnes, U. Dehesa-Carraso, and H. Romero-Paredes, Monte Carlo radiative transfer simulation of a cavity solar reactor for the thermal reduction of cerium oxide., Int. J. Hydrogen Energy 34, 115 (2009). 10.1016/j.ijhydene.2008.10.051
    • (2009) Int. J. Hydrogen Energy , vol.34 , pp. 115
    • Villafán-Vidales, H.I.1    Arancibia-Bulnes, C.A.2    Dehesa-Carraso, U.3    Romero-Paredes, H.4
  • 23
    • 0022212851 scopus 로고
    • Spectral solar irradiance data sets for selected terrestral condictions
    • 10.1016/0379-6787(85)90052-3
    • R. Hulstrom, R. Bird, and C. Riordan, Spectral solar irradiance data sets for selected terrestral condictions., Solar Cells 15, 365 (1985). 10.1016/0379-6787(85)90052-3
    • (1985) Solar Cells , vol.15 , pp. 365
    • Hulstrom, R.1    Bird, R.2    Riordan, C.3
  • 24
    • 45249085470 scopus 로고    scopus 로고
    • A receiver-reactor for the solar thermal dissociation of zinc oxide
    • 10.1115/1.2840576
    • L. O. Schunk, P. Haeberling, S. Wepf, D. Wuilllemin, and A. Meier, A receiver-reactor for the solar thermal dissociation of zinc oxide., J. Sol. Energy Eng. 130, 021009 (2008). 10.1115/1.2840576
    • (2008) J. Sol. Energy Eng. , vol.130 , pp. 021009
    • Schunk, L.O.1    Haeberling, P.2    Wepf, S.3    Wuilllemin, D.4    Meier, A.5
  • 25
    • 77955187287 scopus 로고    scopus 로고
    • Design of a lab-scale rotary cavity-type solar reactor for continuous thermal reduction of volatile oxides under reduced pressure
    • 10.1115/1.4001147
    • M. Chambon, S. Abanades, and G. Flamant, Design of a lab-scale rotary cavity-type solar reactor for continuous thermal reduction of volatile oxides under reduced pressure., J. Sol. Energy Eng. 132, 021006 (2010). 10.1115/1.4001147
    • (2010) J. Sol. Energy Eng. , vol.132 , pp. 021006
    • Chambon, M.1    Abanades, S.2    Flamant, G.3
  • 27
    • 0019606556 scopus 로고
    • Infrared optical properties of evaporated alumina films
    • 10.1364/AO.20.002742
    • T. S. Eriksson, A. Hjortsberg, G. A. Niklasson, and C. G. Granqvist, Infrared optical properties of evaporated alumina films., Appl. Opt. 20, 2742 (1981). 10.1364/AO.20.002742
    • (1981) Appl. Opt. , vol.20 , pp. 2742
    • Eriksson, T.S.1    Hjortsberg, A.2    Niklasson, G.A.3    Granqvist, C.G.4
  • 28
    • 0004153986 scopus 로고
    • (Addison-Wesley, Reading, MA).
    • F. M. White, Heat Transfer (Addison-Wesley, Reading, MA, 1984).
    • (1984) Heat Transfer
    • White, F.M.1
  • 29
    • 0031245735 scopus 로고    scopus 로고
    • Optical constants of ZnO
    • 10.1143/JJAP.36.6237
    • H. Yoshikawa and S. Adachi, Optical constants of ZnO., Jpn. J. Appl. Phys. Part I 36, 6237 (1997). 10.1143/JJAP.36.6237
    • (1997) Jpn. J. Appl. Phys. Part i , vol.36 , pp. 6237
    • Yoshikawa, H.1    Adachi, S.2
  • 30
    • 33750181187 scopus 로고    scopus 로고
    • A diffusion-based approximate model for radiation heat transfer in a solar thermochemical reactor
    • DOI 10.1016/j.jqsrt.2006.08.003, PII S0022407306001981
    • L. A. Dombrovsky, W. Lipiski, and A. Steinfeld, A diffusion-based approximate model for radiation heat transfer in a solar thermochemical reactor., J. Quant. Spectrosc. Radiat. Transf. 103, 601 (2007). 10.1016/j.jqsrt.2006.08.003 (Pubitemid 44597189)
    • (2007) Journal of Quantitative Spectroscopy and Radiative Transfer , vol.103 , Issue.3 , pp. 601-610
    • Dombrovsky, L.A.1    Lipinski, W.2    Steinfeld, A.3
  • 31
    • 77951102930 scopus 로고    scopus 로고
    • Infrared characterization of ZnO films on Si substrates
    • 10.1002/pssc.200776803
    • J. A. Engelbrecht, K. T. Roro, and R. Swanepoel, Infrared characterization of ZnO films on Si substrates., Phys. Status Solidi C 5, 566 (2008). 10.1002/pssc.200776803
    • (2008) Phys. Status Solidi C , vol.5 , pp. 566
    • Engelbrecht, J.A.1    Roro, K.T.2    Swanepoel, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.