-
1
-
-
34247344319
-
Retrotransposable elements and human disease
-
Callinan P.A., Batzer M.A. Retrotransposable elements and human disease. Genome Dyn. 2006, 1:104-115.
-
(2006)
Genome Dyn.
, vol.1
, pp. 104-115
-
-
Callinan, P.A.1
Batzer, M.A.2
-
2
-
-
0034023123
-
Impact of transposable elements on the human genome
-
Deragon J.M., Capy P. Impact of transposable elements on the human genome. Ann. Med. 2000, 32:264-273.
-
(2000)
Ann. Med.
, vol.32
, pp. 264-273
-
-
Deragon, J.M.1
Capy, P.2
-
3
-
-
82955195772
-
Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes
-
Janicki M., Rooke R., Yang G. Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes. Chromosome Res. 2011, 19:787-808.
-
(2011)
Chromosome Res.
, vol.19
, pp. 787-808
-
-
Janicki, M.1
Rooke, R.2
Yang, G.3
-
4
-
-
23844543047
-
LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model
-
Vitte C., Panaud O. LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet. Genome Res. 2005, 110:91-107.
-
(2005)
Cytogenet. Genome Res.
, vol.110
, pp. 91-107
-
-
Vitte, C.1
Panaud, O.2
-
5
-
-
79952303685
-
Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata
-
Hollister J.D., Smith L.M., Guo Y.L., Ott F., Weigel D., Gaut B.S. Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:2322-2327.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 2322-2327
-
-
Hollister, J.D.1
Smith, L.M.2
Guo, Y.L.3
Ott, F.4
Weigel, D.5
Gaut, B.S.6
-
6
-
-
0029556272
-
Evolution and biological significance of human retroelements
-
Leib-Mosch C., Seifarth W. Evolution and biological significance of human retroelements. Virus Genes 1995, 11:133-145.
-
(1995)
Virus Genes
, vol.11
, pp. 133-145
-
-
Leib-Mosch, C.1
Seifarth, W.2
-
7
-
-
37549029474
-
DNA transposons and the evolution of eukaryotic genomes
-
Feschotte C., Pritham E.J. DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 2007, 41:331-368.
-
(2007)
Annu. Rev. Genet.
, vol.41
, pp. 331-368
-
-
Feschotte, C.1
Pritham, E.J.2
-
8
-
-
79958286960
-
Transposable element proliferation and genome expansion are rare in contemporary sunflower hybrid populations despite widespread transcriptional activity of LTR retrotransposons
-
Ungerer M.C., Kawakami T., Dhakal P., Katterhenry A.N., Heatherington C.A. Transposable element proliferation and genome expansion are rare in contemporary sunflower hybrid populations despite widespread transcriptional activity of LTR retrotransposons. Genome Biol. Evol. 2011, 3:156-167.
-
(2011)
Genome Biol. Evol.
, vol.3
, pp. 156-167
-
-
Ungerer, M.C.1
Kawakami, T.2
Dhakal, P.3
Katterhenry, A.N.4
Heatherington, C.A.5
-
9
-
-
0036417244
-
A new family of chimeric retrotranscripts formed by a full copy of U6 small nuclear RNA fused to the 3' terminus of L1
-
Buzdin A., Ustyugova S., Gogvadze E., Vinogradova T., Lebedev Y., Sverdlov E. A new family of chimeric retrotranscripts formed by a full copy of U6 small nuclear RNA fused to the 3' terminus of L1. Genomics 2002, 80:402-406.
-
(2002)
Genomics
, vol.80
, pp. 402-406
-
-
Buzdin, A.1
Ustyugova, S.2
Gogvadze, E.3
Vinogradova, T.4
Lebedev, Y.5
Sverdlov, E.6
-
10
-
-
33747465505
-
High rate of chimeric gene origination by retroposition in plant genomes
-
Wang W., Zheng H., Fan C., Li J., Shi J., Cai Z., Zhang G., Liu D., Zhang J., Vang S., Lu Z., Wong G.K.-S., Long M., Wang J. High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell 2006, 18:1791-1802.
-
(2006)
Plant Cell
, vol.18
, pp. 1791-1802
-
-
Wang, W.1
Zheng, H.2
Fan, C.3
Li, J.4
Shi, J.5
Cai, Z.6
Zhang, G.7
Liu, D.8
Zhang, J.9
Vang, S.10
Lu, Z.11
Wong, G.K.-S.12
Long, M.13
Wang, J.14
-
11
-
-
71049190885
-
Extensive structural renovation of retrogenes in the evolution of the populus Genome
-
Zhu Z.L., Zhang Y., Long M.Y. Extensive structural renovation of retrogenes in the evolution of the populus Genome. Plant Physiol. 2009, 151:1943-1951.
-
(2009)
Plant Physiol.
, vol.151
, pp. 1943-1951
-
-
Zhu, Z.L.1
Zhang, Y.2
Long, M.Y.3
-
12
-
-
4344651631
-
Retroelements and formation of chimeric retrogenes
-
Buzdin A.A. Retroelements and formation of chimeric retrogenes. Cell. Mol. Life Sci. 2004, 61:2046-2059.
-
(2004)
Cell. Mol. Life Sci.
, vol.61
, pp. 2046-2059
-
-
Buzdin, A.A.1
-
13
-
-
77955000272
-
Transposable elements: insertion pattern and impact on gene expression evolution in hominids
-
Warnefors M., Pereira V., Eyre-Walker A. Transposable elements: insertion pattern and impact on gene expression evolution in hominids. Mol. Biol. Evol. 2010, 27:1955-1962.
-
(2010)
Mol. Biol. Evol.
, vol.27
, pp. 1955-1962
-
-
Warnefors, M.1
Pereira, V.2
Eyre-Walker, A.3
-
14
-
-
36549081460
-
Give-and-take: interactions between DNA transposons and their host plant genomes
-
Dooner H.K., Weill C.F. Give-and-take: interactions between DNA transposons and their host plant genomes. Curr. Opin. Genet. Dev. 2007, 17:486-492.
-
(2007)
Curr. Opin. Genet. Dev.
, vol.17
, pp. 486-492
-
-
Dooner, H.K.1
Weill, C.F.2
-
15
-
-
67149086996
-
Extensive demethylation of repetitive elements during seed development underlies gene imprinting
-
Henikoff S., Gehring M., Bubb K.L. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 2009, 324:1447-1451.
-
(2009)
Science
, vol.324
, pp. 1447-1451
-
-
Henikoff, S.1
Gehring, M.2
Bubb, K.L.3
-
16
-
-
79961209289
-
A "mille-feuille" of silencing: epigenetic control of transposable elements
-
Rigal M., Mathieu O. A "mille-feuille" of silencing: epigenetic control of transposable elements. Biochim. Biophys. Acta 2011, 1809:452-458.
-
(2011)
Biochim. Biophys. Acta
, vol.1809
, pp. 452-458
-
-
Rigal, M.1
Mathieu, O.2
-
17
-
-
34250174208
-
Chimeric retrogenes suggest a role for the nucleolus in LINE amplification
-
Buzdin A., Gogvadze E., Lebrun M.H. Chimeric retrogenes suggest a role for the nucleolus in LINE amplification. FEBS Lett. 2007, 581:2877-2882.
-
(2007)
FEBS Lett.
, vol.581
, pp. 2877-2882
-
-
Buzdin, A.1
Gogvadze, E.2
Lebrun, M.H.3
-
18
-
-
77950473787
-
Large-scale discovery of insertion hotspots and preferential integration sites of human transposed elements
-
Ast G., Levy A., Schwartz S. Large-scale discovery of insertion hotspots and preferential integration sites of human transposed elements. Nucleic Acids Res. 2010, 38:1515-1530.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 1515-1530
-
-
Ast, G.1
Levy, A.2
Schwartz, S.3
-
19
-
-
33846805782
-
Conservation of noncoding microsatellites in plants: implication for gene regulation
-
Zhang L.D., Zuo K.J., Zhang F., Cao Y.F., Wang J., Zhang Y.D., Sun X.F., Tang K.X. Conservation of noncoding microsatellites in plants: implication for gene regulation. Bmc Genomics 2006, 7:323-330.
-
(2006)
Bmc Genomics
, vol.7
, pp. 323-330
-
-
Zhang, L.D.1
Zuo, K.J.2
Zhang, F.3
Cao, Y.F.4
Wang, J.5
Zhang, Y.D.6
Sun, X.F.7
Tang, K.X.8
-
20
-
-
0027258342
-
Insertion of a 50 truncated L1 element into the 30 end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy
-
Narita N., Nishio H., Kitoh Y., Ishikawa Y., Minami R., Nakamura H., Matsuo M. Insertion of a 50 truncated L1 element into the 30 end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. J. Clin. Invest. 1993, 91:1862-1867.
-
(1993)
J. Clin. Invest.
, vol.91
, pp. 1862-1867
-
-
Narita, N.1
Nishio, H.2
Kitoh, Y.3
Ishikawa, Y.4
Minami, R.5
Nakamura, H.6
Matsuo, M.7
-
21
-
-
77954294791
-
RJPrimers: unique transposable element insertion junction discovery and PCR primer design for marker development
-
You F.M., Wanjugi H., Huo N., Lazo G.R., Luo M.C., Anderson O.D., Dvorak J., Gu Y.Q. RJPrimers: unique transposable element insertion junction discovery and PCR primer design for marker development. Nucleic Acids Res. 2010, 38:310-320.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 310-320
-
-
You, F.M.1
Wanjugi, H.2
Huo, N.3
Lazo, G.R.4
Luo, M.C.5
Anderson, O.D.6
Dvorak, J.7
Gu, Y.Q.8
-
22
-
-
43949138227
-
Blast2GO: a comprehensive suite for functional analysis in plant genomics
-
Conesa A., Gotz S. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008, 2008:619-832.
-
(2008)
Int. J. Plant Genomics
, vol.2008
, pp. 619-832
-
-
Conesa, A.1
Gotz, S.2
-
23
-
-
37349093019
-
Genome organization and gene expression shape the transposable element distribution in the Drosophila melanogaster euchromatin
-
Reuter M., Fontanillas P., Hartl D.L. Genome organization and gene expression shape the transposable element distribution in the Drosophila melanogaster euchromatin. Plos Genet. 2007, 3:2256-2267.
-
(2007)
Plos Genet.
, vol.3
, pp. 2256-2267
-
-
Reuter, M.1
Fontanillas, P.2
Hartl, D.L.3
-
24
-
-
34249752804
-
Gene function and expression level influence the insertion/fixation dynamics of distinct transposon families in mammalian introns
-
Pozzoli U., Sironi M., Menozzi G., Comi G.P., Cereda M., Cagliani R., Bresolin N. Gene function and expression level influence the insertion/fixation dynamics of distinct transposon families in mammalian introns. Genome Biol. 2006, 7:R120.
-
(2006)
Genome Biol.
, vol.7
-
-
Pozzoli, U.1
Sironi, M.2
Menozzi, G.3
Comi, G.P.4
Cereda, M.5
Cagliani, R.6
Bresolin, N.7
-
25
-
-
79958117110
-
Distributions of transposable elements reveal hazardous zones in mammalian Introns
-
Zhang Y., Romanish M.T., Mager D.L. Distributions of transposable elements reveal hazardous zones in mammalian Introns. Plos Comput. Biol. 2011, 7:1-13.
-
(2011)
Plos Comput. Biol.
, vol.7
, pp. 1-13
-
-
Zhang, Y.1
Romanish, M.T.2
Mager, D.L.3
-
26
-
-
0013630297
-
Nested retrotransposons in the intergenic regions of the maize genome
-
SanMiguel P., Tikhonov A., Jin Y.K., Motchoulskaia N., Zakharov D., Melake Berhan A., Springer P.S., Edwards K.J., Lee M., Avramova Z., Bennetzen J.L. Nested retrotransposons in the intergenic regions of the maize genome. Science 1996, 274:765-768.
-
(1996)
Science
, vol.274
, pp. 765-768
-
-
SanMiguel, P.1
Tikhonov, A.2
Jin, Y.K.3
Motchoulskaia, N.4
Zakharov, D.5
Melake Berhan, A.6
Springer, P.S.7
Edwards, K.J.8
Lee, M.9
Avramova, Z.10
Bennetzen, J.L.11
-
27
-
-
59849128363
-
The contribution of transposable elements to expressed coding sequence in Arabidopsis thaliana
-
Lockton S., Gaut B.S. The contribution of transposable elements to expressed coding sequence in Arabidopsis thaliana. J. Mol. Evol. 2009, 68:80-89.
-
(2009)
J. Mol. Evol.
, vol.68
, pp. 80-89
-
-
Lockton, S.1
Gaut, B.S.2
-
28
-
-
72849134447
-
Distribution, diversity, evolution, and survival of Helitrons in the maize genome
-
Yang L., Bennetzen J.L. Distribution, diversity, evolution, and survival of Helitrons in the maize genome. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:19922-19927.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 19922-19927
-
-
Yang, L.1
Bennetzen, J.L.2
-
29
-
-
78751580443
-
Differentiation of epigenetic modifications between transposons and genes
-
Kakutani T., Saze H. Differentiation of epigenetic modifications between transposons and genes. Curr. Opin. Plant Biol. 2011, 14:81-87.
-
(2011)
Curr. Opin. Plant Biol.
, vol.14
, pp. 81-87
-
-
Kakutani, T.1
Saze, H.2
-
30
-
-
79955082486
-
Transposable element origins of epigenetic gene regulation
-
Lisch D., Bennetzen J.L. Transposable element origins of epigenetic gene regulation. Curr. Opin. Plant Biol. 2011, 14:156-161.
-
(2011)
Curr. Opin. Plant Biol.
, vol.14
, pp. 156-161
-
-
Lisch, D.1
Bennetzen, J.L.2
-
31
-
-
77956811011
-
Recent insights into mechanisms of genome size change in plants
-
Grover C.E., Wendel J.F. Recent insights into mechanisms of genome size change in plants. J. Bot. 2010, 2010. 10.1155/2010/382732.
-
(2010)
J. Bot.
, vol.2010
-
-
Grover, C.E.1
Wendel, J.F.2
-
32
-
-
49349085907
-
SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation
-
da Maia L.C., Palmieri D.A., de Souza V.Q., Kopp M.M., de Carvalho F.I., Costa de Oliveira A. SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int. J. Plant Genomics 2008, 2008:412-696.
-
(2008)
Int. J. Plant Genomics
, vol.2008
, pp. 412-696
-
-
da Maia, L.C.1
Palmieri, D.A.2
de Souza, V.Q.3
Kopp, M.M.4
de Carvalho, F.I.5
Costa de Oliveira, A.6
-
33
-
-
0033555906
-
Tandem repeats finder: a program to analyze DNA sequences
-
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999, 27:573-580.
-
(1999)
Nucleic Acids Res.
, vol.27
, pp. 573-580
-
-
Benson, G.1
-
34
-
-
6344289639
-
Inverted repeat structure of the human genome: the X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes
-
Warburton P.E., Giordano J., Cheung F., Gelfand Y., Benson G. Inverted repeat structure of the human genome: the X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. Genome Res. 2004, 14:1861-1869.
-
(2004)
Genome Res.
, vol.14
, pp. 1861-1869
-
-
Warburton, P.E.1
Giordano, J.2
Cheung, F.3
Gelfand, Y.4
Benson, G.5
-
35
-
-
69449088804
-
Advances in maize genomics and their value for enhancing genetic gains from breeding
-
Xu Y., Skinner D.J., Wu H., Palacios-Rojas N., Araus J.L., Yan J., Gao S., Warburton M.L., Crouch J.H. Advances in maize genomics and their value for enhancing genetic gains from breeding. Int. J. Plant Genomics 2009, 957602. 10.1155/2009/957602.
-
(2009)
Int. J. Plant Genomics
, pp. 957602
-
-
Xu, Y.1
Skinner, D.J.2
Wu, H.3
Palacios-Rojas, N.4
Araus, J.L.5
Yan, J.6
Gao, S.7
Warburton, M.L.8
Crouch, J.H.9
-
37
-
-
0031586003
-
Prediction of complete gene structures in human genomic DNA
-
Burge C., Karlin S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 1997, 268:78-94.
-
(1997)
J. Mol. Biol.
, vol.268
, pp. 78-94
-
-
Burge, C.1
Karlin, S.2
|