메뉴 건너뛰기




Volumn 135, Issue 1, 2012, Pages 307-318

Feature extraction via composite scoring and voting in breast cancer

Author keywords

Classification; E2F4; Machine learning; Triple negative breast cancer; Tumor subtypes

Indexed keywords

ESTROGEN; TRANSCRIPTION FACTOR E2F4;

EID: 84865112545     PISSN: 01676806     EISSN: 15737217     Source Type: Journal    
DOI: 10.1007/s10549-012-2177-3     Document Type: Article
Times cited : (2)

References (48)
  • 8
    • 75649117850 scopus 로고    scopus 로고
    • Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene
    • 10.1038/sj.bjc.6605450
    • Buffa FM, Harris a L, West CM, Miller CJ (2010) Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. Br J Cancer 102:428-435. doi: 10.1038/sj.bjc.6605450
    • (2010) Br J Cancer , vol.102 , pp. 428-435
    • Buffa, F.M.1    Harris, A.L.2    West, C.M.3    Miller, C.J.4
  • 9
    • 34447632167 scopus 로고    scopus 로고
    • Gene expression profiling spares early breast cancer patients from adjuvant therapy: Derived and validated in two population-based cohorts
    • 10.1186/bcr1325
    • Pawitan Y, Bjöhle J, Amler L et al (2005) Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 7:R953-R964. doi: 10.1186/bcr1325
    • (2005) Breast Cancer Res , vol.7
    • Pawitan, Y.1    Bjöhle, J.2    Amler, L.3
  • 10
    • 80053426842 scopus 로고    scopus 로고
    • Targeted therapies for breast cancer
    • 10.1172/JCI57152
    • Higgins MJ, Baselga J (2011) Targeted therapies for breast cancer. J Clin Invest 121:3797-3803. doi: 10.1172/JCI57152
    • (2011) J Clin Invest , vol.121 , pp. 3797-3803
    • Higgins, M.J.1    Baselga, J.2
  • 13
    • 79960015997 scopus 로고    scopus 로고
    • Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies
    • 10.1172/JCI45014DS1
    • Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121:2750-2767. doi: 10.1172/JCI45014DS1
    • (2011) J Clin Invest , vol.121 , pp. 2750-2767
    • Lehmann, B.D.1    Bauer, J.A.2    Chen, X.3    Sanders, M.E.4    Chakravarthy, A.B.5    Shyr, Y.6    Pietenpol, J.A.7
  • 16
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classfication methods for tissue classification based on gene expression
    • DOI 10.1093/bioinformatics/bth267
    • Li T, Zhang C, Ogihara M (2004) A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20:2429-2437. doi: 10.1093/bioinformatics/bth267 (Pubitemid 39429915)
    • (2004) Bioinformatics , vol.20 , Issue.15 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 19
    • 84857509296 scopus 로고    scopus 로고
    • Deep time: The long and the short of adjuvant endocrine therapy for breast cancer
    • 10.1200/JCO.2011.40.1455
    • Burstein HJ, Griggs JJ (2012) Deep time: the long and the short of adjuvant endocrine therapy for breast cancer. J Clin Oncol 30:684-686. doi: 10.1200/JCO.2011.40.1455
    • (2012) J Clin Oncol , vol.30 , pp. 684-686
    • Burstein, H.J.1    Griggs, J.J.2
  • 21
    • 60849119837 scopus 로고    scopus 로고
    • CMA: A comprehensive Bioconductor package for supervised classification with high dimensional data
    • 10.1186/1471-2105-9-439
    • Slawski M, Daumer M, Boulesteix AL (2008) CMA: a comprehensive Bioconductor package for supervised classification with high dimensional data. BMC Bioinformatics 9:439. doi: 10.1186/1471-2105-9-439
    • (2008) BMC Bioinformatics , vol.9 , pp. 439
    • Slawski, M.1    Daumer, M.2    Boulesteix, A.L.3
  • 22
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
    • 10.1023/A:1023949509487
    • Monti S, Tamayo P, Mesirov J, Golub T (2003) Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach Learn 52:91-118
    • (2003) Mach Learn , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 24
    • 79952819724 scopus 로고    scopus 로고
    • GOBO: Gene expression-based outcome for breast cancer online
    • 10.1371/journal.pone.0017911.g001
    • Ringner M, Fredlund E, Häkkinen J, Borg A, Staaf J (2011) GOBO: gene expression-based outcome for breast cancer online. PLoS ONE 6:e17911. doi: 10.1371/journal.pone.0017911.g001
    • (2011) PLoS ONE , vol.6 , pp. 17911
    • Ringner, M.1    Fredlund, E.2    Häkkinen, J.3    Borg, A.4    Staaf, J.5
  • 28
    • 78650735473 scopus 로고    scopus 로고
    • The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models
    • 10.1038/nbt.1665
    • Shi L, Campbell G, Jones WD et al (2010) The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol 28:827-838. doi: 10.1038/nbt.1665
    • (2010) Nat Biotechnol , vol.28 , pp. 827-838
    • Shi, L.1    Campbell, G.2    Jones, W.D.3
  • 30
    • 33645746497 scopus 로고    scopus 로고
    • Prediction of sensitivity of rectal cancer cells in response to preoperative radiotherapy by DNA microarray analysis of gene expression profiles
    • 10.1158/0008-5472.CAN-05-3834
    • Watanabe T, Komuro Y, Kiyomatsu T, Kanazawa T, Kazama Y, Tanaka J, Tanaka T, Yamamoto Y, Shirane M, Muto T, Nagawa H (2006) Prediction of sensitivity of rectal cancer cells in response to preoperative radiotherapy by DNA microarray analysis of gene expression profiles. Cancer Res 66:3370-3374. doi: 10.1158/0008-5472.CAN-05-3834
    • (2006) Cancer Res , vol.66 , pp. 3370-3374
    • Watanabe, T.1    Komuro, Y.2    Kiyomatsu, T.3    Kanazawa, T.4    Kazama, Y.5    Tanaka, J.6    Tanaka, T.7    Yamamoto, Y.8    Shirane, M.9    Muto, T.10    Nagawa, H.11
  • 32
    • 24644512209 scopus 로고    scopus 로고
    • Simpleaffy: A BioConductor package for Affymetrix Quality Control and data analysis
    • DOI 10.1093/bioinformatics/bti605
    • Wilson CL, Miller CJ (2005) Simpleaffy: a BioConductor package for Affymetrix Quality Control and data analysis. Bioinformatics 21:3683-3685. doi: 10.1093/bioinformatics/bti605 (Pubitemid 41264111)
    • (2005) Bioinformatics , vol.21 , Issue.18 , pp. 3683-3685
    • Wilson, C.L.1    Miller, C.J.2
  • 33
    • 0142121516 scopus 로고    scopus 로고
    • Exploration, normalization, and summaries of high density oligonucleotide array probe level data
    • 10.1093/biostatistics/4.2.249
    • Irizarry R, Hobbs B, Collin F et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249-264. doi: 10.1093/biostatistics/4.2.249
    • (2003) Biostatistics , vol.4 , pp. 249-264
    • Irizarry, R.1    Hobbs, B.2    Collin, F.3
  • 34
    • 82755195845 scopus 로고    scopus 로고
    • Empirical comparison of cross-platform normalization methods for gene expression data
    • 10.1186/1471-2105-12-467
    • Rudy J, Valafar F (2011) Empirical comparison of cross-platform normalization methods for gene expression data. BMC Bioinformatics 12:467. doi: 10.1186/1471-2105-12-467
    • (2011) BMC Bioinformatics , vol.12 , pp. 467
    • Rudy, J.1    Valafar, F.2
  • 35
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • 18252602 10.1109/72.788640 1:STN:280:DC%2BD1c%2FpsFSqtA%3D%3D
    • Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10:988-999
    • (1999) IEEE Trans Neural Netw , vol.10 , pp. 988-999
    • Vapnik, V.N.1
  • 36
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • Guyon I, Weston J, Barnhil S, Vapnik VN (2002) Gene selection for cancer classification using support vector machine. Mach Learn 46:389-422 (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 37
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Breiman L (2001) Random forests. Mach Learn 45:5-32 (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 39
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical bayes methods for assessing differential expression in microarray experiments
    • Article3. doi: 10.2202/1544-6115.1027
    • Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3. doi: 10.2202/1544-6115.1027
    • (2004) Stat Appl Genet Mol Biol , vol.3
    • Smyth, G.K.1
  • 40
    • 0003010182 scopus 로고
    • Verification of forcasts expressed in terms of probability
    • 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
    • Brier G (1950) Verification of forcasts expressed in terms of probability. Mon Weather Rev 78:1-3
    • (1950) Mon Weather Rev , vol.78 , pp. 1-3
    • Brier, G.1
  • 41
    • 77954182362 scopus 로고    scopus 로고
    • ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking
    • 10.1093/bioinformatics/btq170
    • Wilkerson MD, Hayes DN (2010) ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26:1572-1573. doi: 10.1093/bioinformatics/btq170
    • (2010) Bioinformatics , vol.26 , pp. 1572-1573
    • Wilkerson, M.D.1    Hayes, D.N.2
  • 44
    • 41349115432 scopus 로고    scopus 로고
    • The DAVID Gene Functional Classification Tool: A novel biological module-centric algorithm to functionally analyze large gene lists
    • DOI 10.1186/gb-2007-8-9-r183
    • Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC, Lempicki RA (2007) The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 8:R183. doi: 10.1186/gb-2007-8-9-r183 (Pubitemid 351895482)
    • (2007) Genome Biology , vol.8 , Issue.9
    • Huang, D.W.1    Sherman, B.T.2    Tan, Q.3    Collins, J.R.4    Alvord, W.G.5    Roayaei, J.6    Stephens, R.7    Baseler, M.W.8    Lane, H.C.9    Lempicki, R.A.10
  • 45
    • 38849131230 scopus 로고    scopus 로고
    • TBL1-TBLR1 and β-catenin recruit each other to Wnt target-gene promoter for transcription activation and oncogenesis
    • DOI 10.1038/ncb1684, PII NCB1684
    • Li J, Wang CY (2008) TBL1-TBLR1 and beta-catenin recruit each other to Wnt target-gene promoter for transcription activation and oncogenesis. Nat Cell Biol 10:160-169. doi: 10.1038/ncb1684 (Pubitemid 351194045)
    • (2008) Nature Cell Biology , vol.10 , Issue.2 , pp. 160-169
    • Li, J.1    Wang, C.-Y.2
  • 46
    • 0030838793 scopus 로고    scopus 로고
    • BRCA1 proteins are transported to the nucleus in the absence of serum and splice variants BRCA1a, BRCA1b are tyrosine phosphoproteins that associate with E2F, cyclins and cyclin dependent kinases
    • Wang H, Shao N, Ding QM, Cui J-q, Reddy ESP, Rao VN (1997) BRCA1 proteins are transported to the nucleus in the absence of serum and splice variants BRCA1a, BRCA1b are tyrosine phosphoproteins that associate with E2F, cyclins and cyclin dependent kinases. Oncogene 15:143-157 (Pubitemid 27344554)
    • (1997) Oncogene , vol.15 , Issue.2 , pp. 143-157
    • Wang, H.1    Shao, N.2    Ding, Q.M.3    Cui, J.-Q.4    Reddy, E.S.P.5    Rao, V.N.6
  • 47
    • 34047112221 scopus 로고    scopus 로고
    • Repression of RAD51 gene expression by E2F4/p130 complexes in hypoxia
    • DOI 10.1038/sj.onc.1210001, PII 1210001
    • Bindra RS, Glazer PM (2007) Repression of RAD51 gene expression by E2F4/p130 complexes in hypoxia. Oncogene 26:2048-2057. doi: 10.1038/sj.onc. 1210001 (Pubitemid 46514738)
    • (2007) Oncogene , vol.26 , Issue.14 , pp. 2048-2057
    • Bindra, R.S.1    Glazer, P.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.