메뉴 건너뛰기




Volumn , Issue , 2012, Pages

Iterative temporal learning and prediction with the sparse online echo state gaussian process

Author keywords

[No Author keywords available]

Indexed keywords

ACTION RECOGNITION; BENCH-MARK PROBLEMS; COMPUTATIONAL COSTS; ECHO STATE NETWORKS; GAUSSIAN PROCESSES; GRAPHICAL MODEL; HIGH-DIMENSIONAL; ONLINE METHODS; PREDICTION TASKS; PREDICTIVE DISTRIBUTIONS; REGRESSION METHOD; SPARSE APPROXIMATIONS; TEMPORAL DYNAMICS; TEMPORAL LEARNING;

EID: 84865085819     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2012.6252504     Document Type: Conference Paper
Times cited : (22)

References (34)
  • 1
    • 0004692255 scopus 로고    scopus 로고
    • A review of the development and application of recursive residuals in linear models
    • F. Kianifard and W. H. Swallow, "A review of the development and application of recursive residuals in linear models," Journal of the American Statistical Association, vol. 91, no. 433, pp. 391-400, 1996.
    • (1996) Journal of the American Statistical Association , vol.91 , Issue.433 , pp. 391-400
    • Kianifard, F.1    Swallow, W.H.2
  • 2
    • 68649088777 scopus 로고    scopus 로고
    • Reservoir computing approaches to recurrent neural network training
    • M. Lukosevicius and H. Jaeger, "Reservoir computing approaches to recurrent neural network training," Computer Science Review, vol. 3, no. 3, pp. 127-149, 2009.
    • (2009) Computer Science Review , vol.3 , Issue.3 , pp. 127-149
    • Lukosevicius, M.1    Jaeger, H.2
  • 4
    • 34548609011 scopus 로고    scopus 로고
    • Collective behavior of a small-world recurrent neural system with scale-free distribution
    • Sept.
    • Z. Deng and Y. Zhang, "Collective behavior of a small-world recurrent neural system with scale-free distribution," IEEE Trans. on Neural Networks, vol. 18, no. 5, pp. 1364 -1375, Sept. 2007.
    • (2007) IEEE Trans. on Neural Networks , vol.18 , Issue.5 , pp. 1364-1375
    • Deng, Z.1    Zhang, Y.2
  • 5
    • 78651295386 scopus 로고    scopus 로고
    • Minimum complexity echo state network
    • jan.
    • A. Rodan and P. Tino, "Minimum complexity echo state network," IEEE Trans. on Neural Networks, vol. 22, no. 1, pp. 131 -144, jan. 2011.
    • (2011) IEEE Trans. on Neural Networks , vol.22 , Issue.1 , pp. 131-144
    • Rodan, A.1    Tino, P.2
  • 6
    • 27144556425 scopus 로고    scopus 로고
    • Incremental online learning in high dimensions
    • S. Vijayakumar, A. D'souza, and S. Schaal, "Incremental online learning in high dimensions," Neural Computation, vol. 17, no. 12, pp. 2602- 2634, 2005.
    • (2005) Neural Computation , vol.17 , Issue.12 , pp. 2602-2634
    • Vijayakumar, S.1    D'souza, A.2    Schaal, S.3
  • 8
    • 0038891993 scopus 로고    scopus 로고
    • Sparse on-line gaussian processes
    • March
    • L. Csató and M. Opper, "Sparse on-line gaussian processes," Neural Computation, vol. 14, no. 3, pp. 641-668, March 2002.
    • (2002) Neural Computation , vol.14 , Issue.3 , pp. 641-668
    • Csató, L.1    Opper, M.2
  • 9
    • 78349289898 scopus 로고    scopus 로고
    • Adaptive nonlinear system identification with echo state networks
    • H. Jaeger, "Adaptive nonlinear system identification with echo state networks," in Advances in Neural Information Processing Systems, 2003, pp. 593-600.
    • (2003) Advances in Neural Information Processing Systems , pp. 593-600
    • Jaeger, H.1
  • 11
    • 80052405292 scopus 로고    scopus 로고
    • Echo state Gaussian process
    • Sept.
    • S. Chatzis and Y. Demiris, "Echo state gaussian process," IEEE Trans. on Neural Networks, vol. 22, no. 9, pp. 1435 -1445, Sept. 2011.
    • (2011) IEEE Trans. on Neural Networks , vol.22 , Issue.9 , pp. 1435-1445
    • Chatzis, S.1    Demiris, Y.2
  • 12
    • 3543096272 scopus 로고    scopus 로고
    • The kernel recursive least-squares algorithm
    • Aug.
    • Y. Engel, S. Mannor, and R. Meir, "The kernel recursive least-squares algorithm," IEEE Trans. on Signal Processing, vol. 52, no. 8, pp. 2275-2285, Aug. 2004.
    • (2004) IEEE Trans. on Signal Processing , vol.52 , Issue.8 , pp. 2275-2285
    • Engel, Y.1    Mannor, S.2    Meir, R.3
  • 13
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D. Rumelhart, G. Hinton, and R. Williams, "Learning representations by back-propagating errors," Nature, vol. 323, no. 6088, pp. 533-536, 1986.
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3
  • 14
    • 0000903748 scopus 로고
    • Generalization of backpropagation with application to a recurrent gas market model
    • P. J. and Werbos, "Generalization of backpropagation with application to a recurrent gas market model," Neural Networks, vol. 1, no. 4, pp. 339 - 356, 1988.
    • (1988) Neural Networks , vol.1 , Issue.4 , pp. 339-356
    • Werbos, P.J.1
  • 15
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • June
    • R. J. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent neural networks," Neural Computation, vol. 1, no. 2, pp. 270-280, June 1989.
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 18
    • 29144453489 scopus 로고    scopus 로고
    • A unifying view of sparse approximate gaussian process regression
    • December
    • J. Quiñonero Candela and C. E. Rasmussen, "A unifying view of sparse approximate gaussian process regression," J. Mach. Learn. Res., vol. 6, pp. 1939-1959, December 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1939-1959
    • Quiñonero Candela, J.1    Rasmussen, C.E.2
  • 21
    • 84864068501 scopus 로고    scopus 로고
    • A matching pursuit approach to sparse gaussian process regression
    • Cambridge, MA: MIT Press
    • S. Keerthi and W. Chu, "A matching pursuit approach to sparse gaussian process regression," in Advances in Neural Information Processing Systems 18. Cambridge, MA: MIT Press, 2006, pp. 643-650.
    • (2006) Advances in Neural Information Processing Systems , vol.18 , pp. 643-650
    • Keerthi, S.1    Chu, W.2
  • 28
    • 61549112727 scopus 로고    scopus 로고
    • Online prediction of time series data with kernels
    • March
    • C. Richard, J. Bermudez, and P. Honeine, "Online prediction of time series data with kernels," IEEE Trans. on Signal Processing, vol. 57, no. 3, pp. 1058 -1067, March 2009.
    • (2009) IEEE Trans. on Signal Processing , vol.57 , Issue.3 , pp. 1058-1067
    • Richard, C.1    Bermudez, J.2    Honeine, P.3
  • 30
    • 0001553560 scopus 로고
    • A function estimation approach to sequential learning with neural networks
    • Nov
    • V. Kadirkamanathan and M. Niranjan, "A function estimation approach to sequential learning with neural networks," Neural Computation, vol. 5, no. 6, pp. 954-975, Nov 1993.
    • (1993) Neural Computation , vol.5 , Issue.6 , pp. 954-975
    • Kadirkamanathan, V.1    Niranjan, M.2
  • 33
    • 33646162401 scopus 로고    scopus 로고
    • Hierarchical attentive multiple models for execution and recognition of actions
    • Y. Demiris and B. Khadhouri, "Hierarchical attentive multiple models for execution and recognition of actions," Robotics and Autonomous Systems, vol. 54, no. 5, pp. 361-369, 2006.
    • (2006) Robotics and Autonomous Systems , vol.54 , Issue.5 , pp. 361-369
    • Demiris, Y.1    Khadhouri, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.