메뉴 건너뛰기




Volumn , Issue , 2012, Pages

Redundancy-Constrained feature selection with radial basis function networks

Author keywords

feature redundancy; feature selection; radial basis function (RBF) networks

Indexed keywords

BENCHMARK DATA; FEATURE REDUNDANCY; REDUNDANT FEATURES; REGRESSION PROBLEM;

EID: 84865063360     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2012.6252638     Document Type: Conference Paper
Times cited : (8)

References (28)
  • 1
    • 0001121401 scopus 로고    scopus 로고
    • A connectionist system for feature selection
    • N. R. Pal and K. K. Chintalapudi, A connectionist system for feature selection, Neural Parallel Sci. Comput., vol. 5, no. 3, pp. 359-381, 1997.
    • (1997) Neural Parallel Sci. Comput. , vol.5 , Issue.3 , pp. 359-381
    • Pal, N.R.1    Chintalapudi, K.K.2
  • 2
    • 40949142799 scopus 로고    scopus 로고
    • Selecting useful groups of features in a connectionist framework
    • D. Chakraborty and N. R. Pal, Selecting Useful Groups of Features in a Connectionist Framework, IEEE Transactions on Neural Networks, vol 19, no 3, pp. 381-396, 2008.
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.3 , pp. 381-396
    • Chakraborty, D.1    Pal, N.R.2
  • 3
    • 77951937407 scopus 로고    scopus 로고
    • Feature selection with redundancy-constrained class separability
    • Luping Zhou, Lei Wang, and Chunhua Shen, Feature Selection With Redundancy-Constrained Class Separability, IEEE Transactions on Neural Networks, vol 21 (5), 2010, pp 853 - 858
    • (2010) IEEE Transactions on Neural Networks , vol.21 , Issue.5 , pp. 853-858
    • Zhou, L.1    Wang, L.2    Shen, C.3
  • 4
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • L. Yu, H. Liu, Efficient feature selection via analysis of relevance and redundancy, Journal of Machine Learning Research 5 (2004) 12051224.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 12051224
    • Yu, L.1    Liu, H.2
  • 6
    • 77951939084 scopus 로고    scopus 로고
    • Margin-maximizing feature elimination methods for linear and nonlinear Kernel-based discriminant functions
    • Yaman Aksu, David J. Miller, George Kesidis, and Qing X. Yang, Margin-Maximizing Feature Elimination Methods for Linear and Nonlinear Kernel-Based Discriminant Functions, IEEE Transactions on Neural Networks, vol 21 (5), 2010, pp 701 - 717
    • (2010) IEEE Transactions on Neural Networks , vol.21 , Issue.5 , pp. 701-717
    • Aksu, Y.1    Miller, D.J.2    Kesidis, G.3    Yang, Q.X.4
  • 7
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • H. Peng, F. Long, C. Ding, Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy, IEEE Transactions on PAMI (2005) 12261238.
    • (2005) IEEE Transactions on PAMI , pp. 12261238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 8
    • 48649084981 scopus 로고    scopus 로고
    • A feature selection algorithm with redundancy reduction for text classification
    • ISCIS 2007. 22nd international symposium on Computer and Information Sciences
    • S. Saleh, Y.E. Sonbaty, A feature selection algorithm with redundancy reduction for text classification, in: Computer and informa- tion sciences, 2007. ISCIS 2007. 22nd international symposium on Computer and Information Sciences, pp. 16.
    • (2007) Computer and Information Sciences , pp. 16
    • Saleh, S.1    Sonbaty, Y.E.2
  • 9
    • 1242263791 scopus 로고    scopus 로고
    • A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification
    • D. Chakraborty and N. R. Pal, A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification, IEEE Trans. Neural Networks, Vol. 15, No. 1, pp. 110-123, 2004.
    • (2004) IEEE Trans. Neural Networks , vol.15 , Issue.1 , pp. 110-123
    • Chakraborty, D.1    Pal, N.R.2
  • 10
    • 0035359273 scopus 로고    scopus 로고
    • Integrated feature analysis and fuzzy rule based system identification in a neuro-fuzzy paradigm
    • D. Chakraborty and N. R. Pal, Integrated feature analysis and fuzzy rule based system identification in a neuro-fuzzy paradigm, IEEE Trans. Syst., Man, Cybern. - B, Vol. 31, No. 3, pp. 391-400, 2001.
    • (2001) IEEE Trans. Syst., Man, Cybern. - B , vol.31 , Issue.3 , pp. 391-400
    • Chakraborty, D.1    Pal, N.R.2
  • 11
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • F. Kohavi and G. John, Wrappers for feature subset selection, Artificial intelligence, Vol. 97, No. 1, pp. 273-342, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1 , pp. 273-342
    • Kohavi, F.1    John, G.2
  • 12
    • 31744443319 scopus 로고    scopus 로고
    • Genetic programming for simultaneous feature selection and classifier design
    • D. Muni, N. R. Pal, and J. Das, Genetic programming for simultaneous feature selection and classifier design, IEEE Trans. Systems, Man and Cybern - B, Vol. 36, No. 1, pp. 106-117, 2006.
    • (2006) IEEE Trans. Systems, Man and Cybern - B , vol.36 , Issue.1 , pp. 106-117
    • Muni, D.1    Pal, N.R.2    Das, J.3
  • 13
    • 33846945056 scopus 로고    scopus 로고
    • Recursive gene selection based on maximum margin criterion: A comparison with SVM-RFE
    • S. Niijima and S. Kuhara, Recursive gene selection based on maximum margin criterion: a comparison with SVM-RFE. BMC Bioinformatics, 7:543, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 543
    • Niijima, S.1    Kuhara, S.2
  • 14
    • 21444441545 scopus 로고    scopus 로고
    • Selecting input variables for fuzzy models
    • S. L. Chiu, Selecting input variables for fuzzy models, Journal of Intelligent & Fuzzy Systems, Vol. 4, No. 4, pp. 243-256, 1996.
    • (1996) Journal of Intelligent & Fuzzy Systems , vol.4 , Issue.4 , pp. 243-256
    • Chiu, S.L.1
  • 16
    • 49449103684 scopus 로고    scopus 로고
    • Supervised dimensionality reduction via sequential semidefinite programming
    • C. Shen, H. Li, andM. J. Brooks, Supervised dimensionality reduction via sequential semidefinite programming, Pattern Recognit., vol. 41, no. 12, pp. 3644-3652, 2008.
    • (2008) Pattern Recognit. , vol.41 , Issue.12 , pp. 3644-3652
    • Shen, C.1    Li, H.2    Brooks, M.J.3
  • 17
    • 57049179077 scopus 로고    scopus 로고
    • Simultaneous structure identification and fuzzy rule generation for Takagi-Sugeno models
    • N. R. Pal and S. Saha, Simultaneous structure identification and fuzzy rule generation for Takagi-Sugeno models, IEEE Trans. Syst., Man, Cybern. - B, Vol. 38, No. 6, pp. 1626-1638, 2008.
    • (2008) IEEE Trans. Syst., Man, Cybern. - B , vol.38 , Issue.6 , pp. 1626-1638
    • Pal, N.R.1    Saha, S.2
  • 18
    • 50249090228 scopus 로고    scopus 로고
    • A fuzzy rule based approach to identify biomarkers for diagnostic classification of cancers
    • N. R. Pal, A fuzzy rule based approach to identify biomarkers for diagnostic classification of cancers, IEEE Int. Conf. Fuzzy Systems, Fuzz-IEEE 2007, pp. 1-6, 2007.
    • (2007) IEEE Int. Conf. Fuzzy Systems, Fuzz-IEEE 2007 , pp. 1-6
    • Pal, N.R.1
  • 19
    • 84255215765 scopus 로고    scopus 로고
    • Evolutionary methods for unsupervised feature selection using sammons stress function
    • DOI 10.1007/s12543-010-0047-4
    • A. Saxena, N. R. Pal and M. Vora, Evolutionary Methods for Unsupervised Feature Selection Using Sammons Stress Function, Fuzzy Information and Engineering - An International Journal, Vol. 2, 3, pp 229-247, 2010, DOI 10.1007/s12543-010-0047-4.
    • (2010) Fuzzy Information and Engineering - An International Journal , vol.2 , Issue.3 , pp. 229-247
    • Saxena, A.1    Pal, N.R.2    Vora, M.3
  • 20
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance, ?
    • Feb.
    • A. Jain and D. Zongker, Feature selection: Evaluation, application, and small sample performance, ? IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 2, pp. 153-158, Feb. 1997.
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 21
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Apr.
    • H. Liu and L. Yu, Toward integrating feature selection algorithms for classification and clustering, IEEE Trans. Knowl. Data Eng., vol. 17, no. 4, pp. 491-502, Apr. 2005.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 22
    • 0035336996 scopus 로고    scopus 로고
    • Information-theoretic algorithm for feature selection
    • M. Last, A. Kandel, and O.Maimon, Information-theoretic algorithm for feature selection, Pattern Recognit. Lett., vol. 22, pp. 799-811, 2001.
    • (2001) Pattern Recognit. Lett. , vol.22 , pp. 799-811
    • Last, M.1    Kandel, A.2    Maimon, O.3
  • 24
    • 84910828260 scopus 로고
    • Application of the Karhunen-Loeve expansion to feature selection and ordering
    • Fakunaga, K. & Koontz, W. L. G.(1970), Application of the Karhunen-Loeve expansion to feature selection and ordering, IEEE Trans. Comput., 19, pp. 311-318
    • (1970) IEEE Trans. Comput. , vol.19 , pp. 311-318
    • Fakunaga, K.1    Koontz, W.L.G.2
  • 26
    • 0024895461 scopus 로고
    • A note on genetic algorithms for large-scale feature selection
    • Siedlick. W. & Sklansky.J.(1989), A note on genetic algorithms for large-scale feature selection, Pattern Recognition Letters, 10, pp. 335-347.
    • (1989) Pattern Recognition Letters , vol.10 , pp. 335-347
    • Siedlick, W.1    Sklansky, J.2
  • 28
    • 84865070153 scopus 로고    scopus 로고
    • http://archive.ics.uci.edu/ml/


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.