메뉴 건너뛰기




Volumn 19, Issue 3, 2008, Pages 381-396

Selecting useful groups of features in a connectionist framework

Author keywords

Classification; Feature selection; Multilayered perceptron networks; Radial basis function (RBF) networks

Indexed keywords

APPROXIMATION THEORY; COMPUTER SIMULATION; FEATURE EXTRACTION; MULTILAYER NEURAL NETWORKS; RADIAL BASIS FUNCTION NETWORKS;

EID: 40949142799     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2007.910730     Document Type: Article
Times cited : (62)

References (49)
  • 1
    • 33751119558 scopus 로고    scopus 로고
    • Identifying the most significant genes from gene expression profiles for sample classification
    • H. Al-Mubaid and N. Ghaffari, "Identifying the most significant genes from gene expression profiles for sample classification," in Proc. IEEE Conf. Granural Comput., 2006, pp. 655-658.
    • (2006) Proc. IEEE Conf. Granural Comput , pp. 655-658
    • Al-Mubaid, H.1    Ghaffari, N.2
  • 2
    • 0002263953 scopus 로고
    • The irises of the Gaspe Peninsula
    • E. Anderson, "The irises of the Gaspe Peninsula," Bull. Amer. IRIS Soc., vol. 59, pp. 2-5, 1935.
    • (1935) Bull. Amer. IRIS Soc , vol.59 , pp. 2-5
    • Anderson, E.1
  • 3
    • 0029256585 scopus 로고
    • Determining input features for multilayered perceptron
    • L. M. Beleue and K. W. Bauer, "Determining input features for multilayered perceptron," Neurocomputing, vol. 7, no. 2, pp. 111-121, 1995.
    • (1995) Neurocomputing , vol.7 , Issue.2 , pp. 111-121
    • Beleue, L.M.1    Bauer, K.W.2
  • 5
    • 12244293651 scopus 로고    scopus 로고
    • Simultaneous classification and relevant feature identification in high-dimensional spaces: Application to molecular profiling data
    • C. Bhattacharyya, L. R. Grate, A. Rizki, D. Radisky, F. J. Molina, M. I. Jordan, M. J. Bissell, and I. S. Mian, "Simultaneous classification and relevant feature identification in high-dimensional spaces: Application to molecular profiling data," Signal Process., vol. 83, pp. 729-743, 2003.
    • (2003) Signal Process , vol.83 , pp. 729-743
    • Bhattacharyya, C.1    Grate, L.R.2    Rizki, A.3    Radisky, D.4    Molina, F.J.5    Jordan, M.I.6    Bissell, M.J.7    Mian, I.S.8
  • 6
    • 0003408496 scopus 로고    scopus 로고
    • Dept. Inf. Comput. Sci, Univ. California, Irvine, CA, Online, Available
    • C. L. Blake and C. J. Merz, "UCI Repository of Machine Learning Databases," Dept. Inf. Comput. Sci., Univ. California, Irvine, CA, 1998 [Online]. Available: http://www.ics.uci.edu/mlearn/MLRepository.html
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2
  • 7
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A. L. Blum and P. Langley, "Selection of relevant features and examples in machine learning," Artif. Intell., vol. 97, no. 1, pp. 245-271, 1997.
    • (1997) Artif. Intell , vol.97 , Issue.1 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 8
    • 0026839971 scopus 로고
    • Fast genetic selection of features for neural network classifiers
    • Mar
    • F. Z. Brill, D. E. Brown, and W. N. Martin, "Fast genetic selection of features for neural network classifiers," IEEE Trans. Neural Netw. vol. 3, no. 2, pp. 324-328, Mar. 1992.
    • (1992) IEEE Trans. Neural Netw , vol.3 , Issue.2 , pp. 324-328
    • Brill, F.Z.1    Brown, D.E.2    Martin, W.N.3
  • 9
    • 0035359273 scopus 로고    scopus 로고
    • Integrated feature analysis and fuzzy rule-based system identification in a neuro-fuzzy paradigm
    • Jun
    • D. Chakraborty and N. R. Pal, "Integrated feature analysis and fuzzy rule-based system identification in a neuro-fuzzy paradigm," IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 31, no. 3, pp. 391-400, Jun. 2001.
    • (2001) IEEE Trans. Syst. Man Cybern. B, Cybern , vol.31 , Issue.3 , pp. 391-400
    • Chakraborty, D.1    Pal, N.R.2
  • 10
    • 1242263791 scopus 로고    scopus 로고
    • A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification
    • Jan
    • D. Chakraborty and N. R. Pal, "A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification," IEEE Trans. Neural Netw., vol. 15, no. 1, pp. 110-123, Jan. 2004.
    • (2004) IEEE Trans. Neural Netw , vol.15 , Issue.1 , pp. 110-123
    • Chakraborty, D.1    Pal, N.R.2
  • 11
    • 0038199532 scopus 로고    scopus 로고
    • Two connectionist schemes for selecting groups of features (sensors)
    • D. Chakraborty and N. R. Pal, "Two connectionist schemes for selecting groups of features (sensors)," in Proc. 2003 IEEE Int. Conf. Fuzzy Syst., 2003, pp. 161-166.
    • (2003) Proc. 2003 IEEE Int. Conf. Fuzzy Syst , pp. 161-166
    • Chakraborty, D.1    Pal, N.R.2
  • 12
    • 0031245693 scopus 로고    scopus 로고
    • Feature analysis: Neural network and fuzzy set theoretic approaches
    • R. De, N. R. Pal, and S. K. Pal, "Feature analysis: Neural network and fuzzy set theoretic approaches," Pattern Recognit., vol. 30, no. 10, pp. 1579-1590, 1997.
    • (1997) Pattern Recognit , vol.30 , Issue.10 , pp. 1579-1590
    • De, R.1    Pal, N.R.2    Pal, S.K.3
  • 13
    • 0035505658 scopus 로고    scopus 로고
    • A new pruning heuristic based on variance analysis of sensitivity information
    • Nov
    • A. P. Engelbrecht, "A new pruning heuristic based on variance analysis of sensitivity information," IEEE Trans. Neural Netw., vol. 12, no. 6, pp. 1386-1399, Nov. 2001.
    • (2001) IEEE Trans. Neural Netw , vol.12 , Issue.6 , pp. 1386-1399
    • Engelbrecht, A.P.1
  • 15
    • 0015680481 scopus 로고
    • Texture features for image classification
    • Nov
    • R. Haralick, K. Shanmugam, and I. Dinstein, "Texture features for image classification," IEEE Trans. Syst. Man Cybern., vol. SMC-3, no. 6, pp. 610-621, Nov. 1973.
    • (1973) IEEE Trans. Syst. Man Cybern , vol.SMC-3 , Issue.6 , pp. 610-621
    • Haralick, R.1    Shanmugam, K.2    Dinstein, I.3
  • 16
    • 0001683814 scopus 로고
    • Layered neural networks with Gaussian hidden units as universal approximators
    • E. J. Hartman, J. D. Keeler, and J. M. Kowalski, "Layered neural networks with Gaussian hidden units as universal approximators," Neural Computat., vol. 2, pp. 210-215, 1990.
    • (1990) Neural Computat , vol.2 , pp. 210-215
    • Hartman, E.J.1    Keeler, J.D.2    Kowalski, J.M.3
  • 18
    • 0027812765 scopus 로고
    • Some new results on neural network approximation
    • K. Hornik, "Some new results on neural network approximation," Neural Netw., vol. 6, pp. 1069-1072, 1993.
    • (1993) Neural Netw , vol.6 , pp. 1069-1072
    • Hornik, K.1
  • 19
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer perceptrons
    • K. Hornik, "Approximation capabilities of multilayer perceptrons," Neural Netw., vol. 4, pp. 251-257, 1991.
    • (1991) Neural Netw , vol.4 , pp. 251-257
    • Hornik, K.1
  • 20
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multilayered feedforward networks
    • K. Hornik, M. Stinchcombe, and H. White, "Universal approximation of an unknown mapping and its derivatives using multilayered feedforward networks," Neural Netw., vol. 3, pp. 551-560, 1990.
    • (1990) Neural Netw , vol.3 , pp. 551-560
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 21
    • 0024880831 scopus 로고
    • Multilayered feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayered feedforward networks are universal approximators," Neural Netw., vol. 2, pp. 259-366, 1989.
    • (1989) Neural Netw , vol.2 , pp. 259-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 22
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application and small sample performance
    • Feb
    • A. Jain and D. Zongker, "Feature selection: Evaluation, application and small sample performance," IEEE Trans. Pattern Anal. Mach. Intell. vol. 19, no. 2, pp. 148-153, Feb. 1997.
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell , vol.19 , Issue.2 , pp. 148-153
    • Jain, A.1    Zongker, D.2
  • 25
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that selects features for pattern classifiers
    • M. Kudo and J. Sklansky, "Comparison of algorithms that selects features for pattern classifiers," Pattern Recognit., vol. 33, no. 1, pp. 25-41, 2000.
    • (2000) Pattern Recognit , vol.33 , Issue.1 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 26
    • 0037935415 scopus 로고    scopus 로고
    • Combination of neural and statistical approaches for classifying space-borne multispectral data
    • Calcutta, India
    • A. S. Kumar, S. Chowdhury, and K. L. Mazumder, "Combination of neural and statistical approaches for classifying space-borne multispectral data," in Proc. Int. Conf. Adv. Pattern Recognit. Digit. Tech., Calcutta, India, 1999, pp. 87-91.
    • (1999) Proc. Int. Conf. Adv. Pattern Recognit. Digit. Tech , pp. 87-91
    • Kumar, A.S.1    Chowdhury, S.2    Mazumder, K.L.3
  • 27
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • F. Kohavi and G. John, "Wrappers for feature subset selection," Artif. Intell., vol. 97, no. 1, pp. 273-342, 1997.
    • (1997) Artif. Intell , vol.97 , Issue.1 , pp. 273-342
    • Kohavi, F.1    John, G.2
  • 28
    • 40949107573 scopus 로고    scopus 로고
    • Designing prototype-based classifiers and their application to multispectral satellite images
    • Japan, ISBN: 4-938717-04-2
    • A. Laha, N. R. Pal, and J. Das, "Designing prototype-based classifiers and their application to multispectral satellite images," in Proc. 6th Int. Conf. Soft Comput., Japan, 2000, ISBN: 4-938717-04-2.
    • (2000) Proc. 6th Int. Conf. Soft Comput
    • Laha, A.1    Pal, N.R.2    Das, J.3
  • 29
    • 0035336996 scopus 로고    scopus 로고
    • Information-theoretic algorithm for feature selection
    • M. Last, A. Kandel, and O. Maimon, "Information-theoretic algorithm for feature selection," Pattern Recognit. Lett., vol. 22, pp. 799-811, 2001.
    • (2001) Pattern Recognit. Lett , vol.22 , pp. 799-811
    • Last, M.1    Kandel, A.2    Maimon, O.3
  • 30
    • 0027262895 scopus 로고
    • Multilayered feedforward networks with a nonpolynomial activation function can approximate any function
    • M. Leshno, V. A. Lin, A. Pinkus, and S. Schocken, "Multilayered feedforward networks with a nonpolynomial activation function can approximate any function," Neural Netw., vol. 6, pp. 861-867, 1993.
    • (1993) Neural Netw , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.A.2    Pinkus, A.3    Schocken, S.4
  • 31
    • 84941531642 scopus 로고
    • A new approach to fuzzy-neural system modeling
    • May
    • Y. Lin and G. A. Cunningham, III, "A new approach to fuzzy-neural system modeling," IEEE Trans. Fuzzy Syst., vol. 3, no. 2, pp. 190-198, May 1995.
    • (1995) IEEE Trans. Fuzzy Syst , vol.3 , Issue.2 , pp. 190-198
    • Lin, Y.1    Cunningham III, G.A.2
  • 32
    • 17044405923 scopus 로고    scopus 로고
    • Towards integrating feature selection algorithms for classification and clustering
    • May
    • H. Liu and L. Yu, "Towards integrating feature selection algorithms for classification and clustering," IEEE Trans. Knowl. Data Eng., vol. 17, no. 4, pp. 491-502, May 2005.
    • (2005) IEEE Trans. Knowl. Data Eng , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 33
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D. J. C. MacKay, "Bayesian interpolation," Neural Comput., vol. 4, no. 3, pp. 415-447, 1992.
    • (1992) Neural Comput , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.C.1
  • 34
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backprop networks
    • D. J. C. MacKay, "A practical Bayesian framework for backprop networks," Neural Comput., vol. 4, no. 3, pp. 448-472, 1992.
    • (1992) Neural Comput , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.J.C.1
  • 35
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • D. J. C. MacKay, "The evidence framework applied to classification networks," Neural Comput., vol. 4, no. 5, pp. 698-714, 1992.
    • (1992) Neural Comput , vol.4 , Issue.5 , pp. 698-714
    • MacKay, D.J.C.1
  • 36
    • 0003301456 scopus 로고    scopus 로고
    • Bayesian learning for neural networks
    • Berlin, Germany: Springer-Verlag
    • R. M. Neal, "Bayesian learning for neural networks," in Lecture Notes in Statistics. Berlin, Germany: Springer-Verlag, vol. 118.
    • Lecture Notes in Statistics , vol.118
    • Neal, R.M.1
  • 37
    • 0030086778 scopus 로고    scopus 로고
    • Divergence based feature selection for multimodal class densities
    • J. Novovicova, P. Pudil, and J. Kittler, "Divergence based feature selection for multimodal class densities," IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 2, pp. 218-223, 1996.
    • (1996) IEEE Trans. Pattern Anal. Mach. Intell , vol.18 , Issue.2 , pp. 218-223
    • Novovicova, J.1    Pudil, P.2    Kittler, J.3
  • 38
    • 0000903874 scopus 로고    scopus 로고
    • Soft computing for feature analysis
    • N. R. Pal, "Soft computing for feature analysis," Fuzzy Sets Syst. vol. 103, pp. 201-221, 1999.
    • (1999) Fuzzy Sets Syst , vol.103 , pp. 201-221
    • Pal, N.R.1
  • 39
    • 0001121401 scopus 로고    scopus 로고
    • A connectionist system for feature selection
    • N. R. Pal and K. K. Chintalapudi, "A connectionist system for feature selection," Neural Parallel Sci. Comput., vol. 5, no. 3, pp. 359-381, 1997.
    • (1997) Neural Parallel Sci. Comput , vol.5 , Issue.3 , pp. 359-381
    • Pal, N.R.1    Chintalapudi, K.K.2
  • 40
    • 0000106040 scopus 로고
    • Universal approximation using radial basis function networks
    • J. Park and I. W. Sandberg, "Universal approximation using radial basis function networks," Neural Comput., vol. 3, pp. 246-257, 1991.
    • (1991) Neural Comput , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 44
    • 0031140388 scopus 로고    scopus 로고
    • Neural network feature selector
    • May
    • R. Setino, "Neural network feature selector," IEEE Trans. Neural Netw., vol. 8, no. 3, pp. 654-662, May 1997.
    • (1997) IEEE Trans. Neural Netw , vol.8 , Issue.3 , pp. 654-662
    • Setino, R.1
  • 45
    • 0030190724 scopus 로고    scopus 로고
    • Integrated feature and architecture selection
    • Jul
    • J. M. Steppe, Jr., "Integrated feature and architecture selection," IEEE Trans. Neural Netw., vol. 7, no. 4, pp. 1007-1014, Jul. 1996.
    • (1996) IEEE Trans. Neural Netw , vol.7 , Issue.4 , pp. 1007-1014
    • Steppe Jr., J.M.1
  • 46
    • 21244492142 scopus 로고    scopus 로고
    • On input selection with reversible jump Markov chain Monte Carlo sampling
    • S. A. Sola, T. K. Leen, and K. R. Müller, Eds. Cambridge, MA: MIT Press
    • P. Sykacek, "On input selection with reversible jump Markov chain Monte Carlo sampling," in Advances in Neural Information Processing Systems, S. A. Sola, T. K. Leen, and K. R. Müller, Eds. Cambridge, MA: MIT Press, 2000, vol. 12, pp. 638-644.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 638-644
    • Sykacek, P.1
  • 47
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Sep
    • X. Yao, "Evolving artificial neural networks," Proc. IEEE, vol. 87, no. 9, pp. 1423-1447, Sep. 1999.
    • (1999) Proc. IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 48
    • 0027544110 scopus 로고
    • A fuzzy-logic based approach to qualitative modeling
    • Feb
    • M. Sugeno and T. Yasukawa, "A fuzzy-logic based approach to qualitative modeling," IEEE Trans. Fuzzy Syst., vol. 1, no. 1, pp. 7-31, Feb. 1993.
    • (1993) IEEE Trans. Fuzzy Syst , vol.1 , Issue.1 , pp. 7-31
    • Sugeno, M.1    Yasukawa, T.2
  • 49
    • 0031553665 scopus 로고    scopus 로고
    • Perturbation method for detecting redundant inputs of perceptron networks
    • J. M. Zurada, A. Malinowski, and S. Usui, "Perturbation method for detecting redundant inputs of perceptron networks," Neurocomputing vol. 14, pp. 177-193, 1997.
    • (1997) Neurocomputing , vol.14 , pp. 177-193
    • Zurada, J.M.1    Malinowski, A.2    Usui, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.