메뉴 건너뛰기




Volumn 5, Issue 1, 2012, Pages

Logic minimization and rule extraction for identification of functional sites in molecular sequences

Author keywords

[No Author keywords available]

Indexed keywords

DNA; TRANSCRIPTION FACTOR;

EID: 84864953229     PISSN: None     EISSN: 17560381     Source Type: Journal    
DOI: 10.1186/1756-0381-5-10     Document Type: Article
Times cited : (2)

References (55)
  • 2
    • 33845331515 scopus 로고
    • Minimization of Boolean Functions
    • Minimization of Boolean Functions. McCluskey E, Bell System Technical Journal 1956 35 1417 1444
    • (1956) Bell System Technical Journal , vol.35 , pp. 1417-1444
    • McCluskey, E.1
  • 7
    • 0038047901 scopus 로고    scopus 로고
    • On learning gene regulatory networks under the Boolean network model
    • On learning gene regulatory networks under the Boolean network model. Lähdesmäki H, Shmulevich I, Yli-Harja O, Machine Learning 2003 52 1-2 147 167
    • (2003) Machine Learning , vol.52 , Issue.1-2 , pp. 147-167
    • Lähdesmäki, H.1    Shmulevich, I.2    Yli-Harja, O.3
  • 9
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
    • Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Shmulevich I, Dougherty ER, Kim S, Zhang W, Bioinformatics 2002 18 2 261 274 10.1093/bioinformatics/18.2.261 11847074 (Pubitemid 34183104)
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 11
    • 73649139554 scopus 로고    scopus 로고
    • Mucin-type O-glycosylation - Putting the pieces together
    • 10.1111/j.1742-4658.2009.07429.x 19919547
    • Mucin-type O-glycosylation - putting the pieces together. Jensen PH, Kolarich D, Packer NH, FEBS Journal 2010 277 81 94 10.1111/j.1742-4658.2009. 07429.x 19919547
    • (2010) FEBS Journal , vol.277 , pp. 81-94
    • Jensen, P.H.1    Kolarich, D.2    Packer, N.H.3
  • 13
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • Gene selection for cancer classification using support vector machines. Guyon I, Weston J, Barnhill S, Vapnik V, Mach Learning 2002 46 389 422 10.1023/A:1012487302797 (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 14
    • 34249791169 scopus 로고    scopus 로고
    • Predicting single nucleotide polymorphisms (SNP) from DNA sequence by support vector machine
    • DOI 10.2741/2173
    • Predicting single nucleotide polymorphisms (snp) from dna sequence by support vector machine. Kong W, Choo KW, Front Biosci 2007 12 1610 1614 10.2741/2173 17127407 (Pubitemid 46846793)
    • (2007) Frontiers in Bioscience , vol.12 , Issue.5 , pp. 1610-1614
    • Kong, W.1    Choo, K.W.2
  • 15
    • 79952205470 scopus 로고    scopus 로고
    • Predictions of Hot Spot Residues at Protein-Protein Interfaces Using Support Vector Machines
    • 10.1371/journal.pone.0016774 21386962
    • Predictions of Hot Spot Residues at Protein-Protein Interfaces Using Support Vector Machines. Lise S, Buchan D, Pontil M, Jones DT, PLoS ONE 2011 6 2 16774 10.1371/journal.pone.0016774 21386962
    • (2011) PLoS ONE , vol.6 , Issue.2 , pp. 516774
    • Lise, S.1    Buchan, D.2    Pontil, M.3    Jones, D.T.4
  • 16
  • 17
    • 78649708839 scopus 로고    scopus 로고
    • Development of Robust Calibration Models Using Support Vector Machines for Spectroscopic Monitoring of Blood Glucose
    • 10.1021/ac101754n 21050004
    • Development of Robust Calibration Models Using Support Vector Machines for Spectroscopic Monitoring of Blood Glucose. Barman I, Kong CR, Dingari NC, Dasari RR, Feld MS, Analytical Chemistry 2010 82 23 9719 9726 10.1021/ac101754n 21050004
    • (2010) Analytical Chemistry , vol.82 , Issue.23 , pp. 9719-9726
    • Barman, I.1    Kong, C.R.2    Dingari, N.C.3    Dasari, R.R.4    Feld, M.S.5
  • 18
    • 79956293109 scopus 로고    scopus 로고
    • Combining Support Vector Machines and the t-statistic for Gene Selection in DNA Microarray Data Analysis
    • 6119/2010
    • Combining Support Vector Machines and the t-statistic for Gene Selection in DNA Microarray Data Analysis. Yang T, Kecman V, Cao L, Zhang C, Lecture Notes in Computer Science 2010 55 62 6119/2010
    • (2010) Lecture Notes in Computer Science , pp. 55-62
    • Yang, T.1    Kecman, V.2    Cao, L.3    Zhang, C.4
  • 19
    • 77955484544 scopus 로고    scopus 로고
    • Least-Squares Support Vector Machine Approach to Viral Replication Origin Prediction
    • 10.1287/ijoc.1090.0360 20729987
    • Least-Squares Support Vector Machine Approach to Viral Replication Origin Prediction. Cruz-Cano R, Chew DSH, Choi KP, Leung MY, INFORMS Journal On Computing 2010 22 3 457 470 10.1287/ijoc.1090.0360 20729987
    • (2010) INFORMS Journal on Computing , vol.22 , Issue.3 , pp. 457-470
    • Cruz-Cano, R.1    Chew, D.S.H.2    Choi, K.P.3    Leung, M.Y.4
  • 23
    • 19144366046 scopus 로고    scopus 로고
    • Hybrid neural network system for prediction and recognition of promoter regions in human genome
    • B0401
    • A hybrid neural network system for prediction and recognition of promoter regions in human genome. Chen CB, Li T, J. Zhejiang Univ Sci B. 2005 6 5 401 407 15822155 (Pubitemid 40714923)
    • (2005) Journal of Zhejiang University: Science , vol.6 B , Issue.5 , pp. 401-407
    • Chen, C.-B.1    Li, T.2
  • 24
    • 27744436065 scopus 로고    scopus 로고
    • Prediction of protein secondary structure using improved two-level neural network architecture
    • DOI 10.2174/0929866054864328
    • Prediction of protein secondary structure using improved two-level neural network architecture. Huang X, Huang DS, Zhang GZ, Zhu YP, Li YX, Protein Pept Lett 2005 12 8 805 811 10.2174/0929866054864328 16305553 (Pubitemid 41634862)
    • (2005) Protein and Peptide Letters , vol.12 , Issue.8 , pp. 805-811
    • Huang, X.1    Huang, D.-S.2    Zhang, G.-Z.3    Zhu, Y.-P.4    Li, Y.-X.5
  • 25
    • 23844474057 scopus 로고    scopus 로고
    • Neural networks for protein classification
    • Neural networks for protein classification. Weinert WR, Lopes HS, Appl Bioinformatics 2004 3 1 41 48 10.2165/00822942-200403010-00006 16323965 (Pubitemid 41178927)
    • (2004) Applied Bioinformatics , vol.3 , Issue.1 , pp. 41-48
    • Weinert, W.R.1    Lopes, H.S.2
  • 26
    • 0025536870 scopus 로고
    • Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights
    • Piscataway, NJ, USA: IEEE
    • Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. Widrow B, Nguyen D, Int. Joint Conf. on Neural Networks Piscataway, NJ, USA: IEEE 1990 21 26
    • (1990) Int. Joint Conf. on Neural Networks , pp. 21-26
    • Widrow, B.1    Nguyen, D.2
  • 27
    • 0028543366 scopus 로고
    • Training Feedforward neural networks with the Marquardt Algorithm
    • 10.1109/72.329697
    • Training Feedforward neural networks with the Marquardt Algorithm. Hagan MT, Menhaj MB, IEEE Transaction on Neural Networks 1994 5 6 989 993 10.1109/72.329697
    • (1994) IEEE Transaction on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 31
    • 78649486389 scopus 로고    scopus 로고
    • Rules Extraction from Support Vector Machines: A review
    • 10.1016/j.neucom.2010.02.016
    • Rules Extraction from Support Vector Machines: A review. Barakat N, Bradley AP, Neurocomputing 2010 74 178 190 10.1016/j.neucom.2010.02.016
    • (2010) Neurocomputing , vol.74 , pp. 178-190
    • Barakat, N.1    Bradley, A.P.2
  • 33
    • 33644982752 scopus 로고    scopus 로고
    • Rule generation fro protein secondary structure prediction with support vector machines and decision tree
    • 10.1109/TNB.2005.864021
    • Rule generation fro protein secondary structure prediction with support vector machines and decision tree. He J, Hu HJ, Harrison R, Tai PC, Pan Y, IEEE Transaction on Nanobioscience 2006 5 46 53 10.1109/TNB.2005.864021
    • (2006) IEEE Transaction on Nanobioscience , vol.5 , pp. 46-53
    • He, J.1    Hu, H.J.2    Harrison, R.3    Tai, P.C.4    Pan, Y.5
  • 35
    • 33748862421 scopus 로고    scopus 로고
    • Rule-based learning systems for support vector machines
    • DOI 10.1007/s11063-006-9007-8
    • Rule-based learning systems for support vector machines. Nũez H, Angulo C, Catala A, Neural Processing Letters 2006 24 1 18 10.1007/s11063-006- 9007-8 (Pubitemid 44421303)
    • (2006) Neural Processing Letters , vol.24 , Issue.1 , pp. 1-18
    • Nunez, H.1    Angulo, C.2    Catala, A.3
  • 39
    • 10944237748 scopus 로고    scopus 로고
    • Extracting the knowledge embedded in support vector machines
    • 2004 IEEE International Joint Conference on Neural Networks - Proceedings
    • Extracting the knowledge embedded in support vector machines. Fu X, Ongt C, Keerthit S, Hung G, Goh L, Proceedings of the IEEE International Conference in Neural Networks Piscataway, NJ, United States: IEEE 2004 291 296 The conference took place in Budapest, Hungry (Pubitemid 40011754)
    • (2004) IEEE International Conference on Neural Networks - Conference Proceedings , vol.1 , pp. 291-296
    • Fu, X.1    Ong, C.2    Keerthi, S.3    Hung, G.G.4    Goh, L.5
  • 42
    • 38049069355 scopus 로고    scopus 로고
    • Rule Extraction from Support Vector Machines: An Overview of Issues and Application in Credit Scoring
    • 10.1007/978-3-540-75390-2-2
    • Rule Extraction from Support Vector Machines: An Overview of Issues and Application in Credit Scoring. Martens D, Huysmans J, Setiono R, Vanthienen J, Baesens B, Studies in Computational Intelligence 2008 80 33 63 10.1007/978-3-540-75390-2-2
    • (2008) Studies in Computational Intelligence , vol.80 , pp. 33-63
    • Martens, D.1    Huysmans, J.2    Setiono, R.3    Vanthienen, J.4    Baesens, B.5
  • 44
    • 79952112441 scopus 로고    scopus 로고
    • Probabilistic peak calling andcontrolling false discovery rate estimations in transcription factor binding site mapping from ChIP-seq
    • 10.1007/978-1-60761-854-6-10 20827591
    • Probabilistic peak calling andcontrolling false discovery rate estimations in transcription factor binding site mapping from ChIP-seq. Jiao S, Bailey CP, Zhang S, Ladunga I, Methods Mol Biol 2010 674 161 77 10.1007/978-1-60761-854-6-10 20827591
    • (2010) Methods Mol Biol , vol.674 , pp. 161-177
    • Jiao, S.1    Bailey, C.P.2    Zhang, S.3    Ladunga, I.4
  • 45
    • 79952108961 scopus 로고    scopus 로고
    • Probabilistic approaches to transcription factor binding site prediction
    • 10.1007/978-1-60761-854-6-7 20827588
    • Probabilistic approaches to transcription factor binding site prediction. Posch S, Grau J, Gohr A, Keilwagen J, Grosse I, Methods Mol Biol 2010 674 97 119 10.1007/978-1-60761-854-6-7 20827588
    • (2010) Methods Mol Biol , vol.674 , pp. 97-119
    • Posch, S.1    Grau, J.2    Gohr, A.3    Keilwagen, J.4    Grosse, I.5
  • 46
    • 79952108925 scopus 로고    scopus 로고
    • The Motif Tool Assessment Platform (MTAP) for sequence-based transcription factor binding site prediction tools
    • 10.1007/978-1-60761-854-6-8 20827589
    • The Motif Tool Assessment Platform (MTAP) for sequence-based transcription factor binding site prediction tools. Quest D, Ali H, Methods Mol Biol 2010 674 121 41 10.1007/978-1-60761-854-6-8 20827589
    • (2010) Methods Mol Biol , vol.674 , pp. 121-141
    • Quest, D.1    Ali, H.2
  • 47
    • 77955869106 scopus 로고    scopus 로고
    • Inclusion of neighboring base interdependenciessubstantially improves genome-wide prokaryotic transcription factor binding site prediction
    • 10.1093/nar/gkq274 20439311
    • Inclusion of neighboring base interdependenciessubstantially improves genome-wide prokaryotic transcription factor binding site prediction. Salama RA, Stekel DJ, Nucleic Acids Res. 2010 38 12 135 10.1093/nar/gkq274 20439311
    • (2010) Nucleic Acids Res. , vol.38 , Issue.12 , pp. 5135
    • Salama, R.A.1    Stekel, D.J.2
  • 48
    • 58149512313 scopus 로고    scopus 로고
    • GalNAc-transferase specificity prediction based on feature selection method
    • 10.1016/j.peptides.2008.09.020 18955094
    • GalNAc-transferase specificity prediction based on feature selection method. Lu L, Niu B, Zhao J, Liu L, Lu WC, Liu XJ, Li YX, Cai YD, Peptides 2009 30 359 364 10.1016/j.peptides.2008.09.020 18955094
    • (2009) Peptides , vol.30 , pp. 359-364
    • Lu, L.1    Niu, B.2    Zhao, J.3    Liu, L.4    Lu, W.C.5    Liu, X.J.6    Li, Y.X.7    Cai, Y.D.8
  • 49
    • 13644257223 scopus 로고    scopus 로고
    • Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites
    • 10.1093/glycob/cwh151 15385431
    • Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Julenius K, Mølgaard A, Gupta R, Brunak S, Glycobiology 2004 15 2 153 164 10.1093/glycob/cwh151 15385431
    • (2004) Glycobiology , vol.15 , Issue.2 , pp. 153-164
    • Julenius, K.1    Mølgaard, A.2    Gupta, R.3    Brunak, S.4
  • 50
    • 33646887253 scopus 로고    scopus 로고
    • Predicting O-glycosylation sites in mammalian proteins by using SVMs
    • DOI 10.1016/j.compbiolchem.2006.02.002, PII S1476927106000107
    • Predicting O-glycosylation sites in mammalian proteins by using SVMs. Li S, Liu B, Zeng R, Cai Y, Li Y, Computational Biology and Chemistry 2006 30 203 208 10.1016/j.compbiolchem.2006.02.002 16731044 (Pubitemid 43783164)
    • (2006) Computational Biology and Chemistry , vol.30 , Issue.3 , pp. 203-208
    • Li, S.1    Liu, B.2    Zeng, R.3    Cai, Y.4    Li, Y.5
  • 51
    • 0032919585 scopus 로고    scopus 로고
    • O-GLYCBASE version 4.0: A revised database of O-glycosylated proteins
    • DOI 10.1093/nar/27.1.370
    • O-GLYCBASE version 4.0: a revised database of O-glycosylated proteins. Gupta R, Birch H, Rapacki K, Brunak S, Hansen JE, Nucleic Acids Research 1999 27 370 372 10.1093/nar/27.1.370 9847232 (Pubitemid 29209489)
    • (1999) Nucleic Acids Research , vol.27 , Issue.1 , pp. 370-372
    • Gupta, R.1    Birch, H.2    Rapacki, K.3    Brunak, S.4    Hansen, J.E.5
  • 53
    • 54549083447 scopus 로고    scopus 로고
    • Conservation of peptide acceptor preferences between Drosophila and mammalian polypeptide-GalNAc transferase ortholog pairs
    • 10.1093/glycob/cwn073 18669915
    • Conservation of peptide acceptor preferences between Drosophila and mammalian polypeptide-GalNAc transferase ortholog pairs. Gerken TA, Hagen KGT, Jamison O, Glycobiology 2008 18 11 861 870 10.1093/glycob/cwn073 18669915
    • (2008) Glycobiology , vol.18 , Issue.11 , pp. 861-870
    • Gerken, T.A.1    Hagen, K.G.T.2    Jamison, O.3
  • 54
    • 79954612783 scopus 로고    scopus 로고
    • Emerging paradigms for the initiation of mucin-type protein O-glycosylation by the polypeptide GalNAc transferase family of glycosyltransferases
    • Epub 2011 Feb 24 10.1074/jbc.M111.218701 21349845
    • Emerging paradigms for the initiation of mucin-type protein O-glycosylation by the polypeptide GalNAc transferase family of glycosyltransferases. Gerken TA, Jamison O, Perrine CL, Collette JC, Moinova H, Ravi L, Markowitz SD, Shen W, Patel H, Tabak LA, J Biol Chem 2011 286 16 14493 507 Epub 2011 Feb 24 10.1074/jbc.M111.218701 21349845
    • (2011) J Biol Chem , vol.286 , Issue.16 , pp. 14493-14507
    • Gerken, T.A.1    Jamison, O.2    Perrine, C.L.3    Collette, J.C.4    Moinova, H.5    Ravi, L.6    Markowitz, S.D.7    Shen, W.8    Patel, H.9    Tabak, L.A.10


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.