메뉴 건너뛰기




Volumn 24, Issue 7, 2012, Pages

Liquid flow retardation in nanospaces due to electroviscosity: Electrical double layer overlap, hydrodynamic slippage, and ambient atmospheric CO2 dissolution

Author keywords

[No Author keywords available]

Indexed keywords

ATMOSPHERIC MOVEMENTS; CARBON DIOXIDE; CHLORINE COMPOUNDS; DEIONIZED WATER; DISSOLUTION; HYDRODYNAMICS; LIQUIDS; LITHIUM COMPOUNDS; NEGATIVE IONS; SILICA; YARN;

EID: 84864755993     PISSN: 10706631     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.4732547     Document Type: Article
Times cited : (19)

References (74)
  • 1
    • 49449090221 scopus 로고    scopus 로고
    • Transport phenomena in nanofluidics
    • 10.1103/RevModPhys.80.839
    • Schoch R.B. Han J. Renaud P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 2008, 80:839. 10.1103/RevModPhys.80.839
    • (2008) Rev. Mod. Phys. , vol.80 , pp. 839
    • Schoch, R.B.1    Han, J.2    Renaud, P.3
  • 2
    • 33947490107 scopus 로고
    • Electrokinetic flow in ultrafine capillary slits
    • 10.1021/j100787a019
    • Burgreen D. Nakache F.R. Electrokinetic flow in ultrafine capillary slits. J. Phys. Chem. 1964, 68:1084. 10.1021/j100787a019
    • (1964) J. Phys. Chem. , vol.68 , pp. 1084
    • Burgreen, D.1    Nakache, F.R.2
  • 3
    • 33947485034 scopus 로고
    • Electrokinetic flow in a narrow cylindrical capillary
    • 10.1021/j100895a062
    • Rice C.L. Whitehead R. Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 1965, 69:4017. 10.1021/j100895a062
    • (1965) J. Phys. Chem. , vol.69 , pp. 4017
    • Rice, C.L.1    Whitehead, R.2
  • 4
    • 0037115606 scopus 로고    scopus 로고
    • Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements
    • 10.1021/ac025808b
    • Hibara A. Saito T. Kim H. Tokeshi M. Ooi T. Nakao M. Kitamori T. Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements. Anal. Chem. 2002, 74:6170. 10.1021/ac025808b
    • (2002) Anal. Chem. , vol.74 , pp. 6170
    • Hibara, A.1    Saito, T.2    Kim, H.3    Tokeshi, M.4    Ooi, T.5    Nakao, M.6    Kitamori, T.7
  • 6
    • 23144436386 scopus 로고    scopus 로고
    • From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell
    • 10.1021/nl050712t
    • Liu S. Pu Q. Gao L. Korzeniewski C. Matzke C. From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell. Nano Lett. 2005, 5:1389. 10.1021/nl050712t
    • (2005) Nano Lett. , vol.5 , pp. 1389
    • Liu, S.1    Pu, Q.2    Gao, L.3    Korzeniewski, C.4    Matzke, C.5
  • 7
    • 78650015802 scopus 로고    scopus 로고
    • Anomalous ion transport in 2-nm hydrophilic nanochannels
    • 10.1038/nnano.2010.233
    • Duan C. Majumdar A. Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat. Nanotechnol. 2010, 5:851. 10.1038/nnano.2010.233
    • (2010) Nat. Nanotechnol. , vol.5 , pp. 851
    • Duan, C.1    Majumdar, A.2
  • 9
    • 21644437442 scopus 로고    scopus 로고
    • Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip
    • 10.1021/nl050265h
    • Plecis A. Schoch R.B. Renaud P. Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett. 2005, 5:1147. 10.1021/nl050265h
    • (2005) Nano Lett. , vol.5 , pp. 1147
    • Plecis, A.1    Schoch, R.B.2    Renaud, P.3
  • 10
    • 3042754182 scopus 로고    scopus 로고
    • Ion-enrichment and ion-depletion effect of nanochannel structures
    • 10.1021/nl0494811
    • Pu Q.S. Yun J.S. Temkin H. Liu S.R. Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett. 2004, 4:1099. 10.1021/nl0494811
    • (2004) Nano Lett. , vol.4 , pp. 1099
    • Pu, Q.S.1    Yun, J.S.2    Temkin, H.3    Liu, S.R.4
  • 11
    • 34547465510 scopus 로고    scopus 로고
    • Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel
    • 10.1103/PhysRevLett.99.044501
    • Kim S.J. Wang Y.-C. Lee J.H. Jang H. Han J. Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys. Rev. Lett. 2007, 99:044501. 10.1103/PhysRevLett.99.044501
    • (2007) Phys. Rev. Lett. , vol.99 , pp. 044501
    • Kim, S.J.1    Wang, Y.-C.2    Lee, J.H.3    Jang, H.4    Han, J.5
  • 12
    • 77952539304 scopus 로고    scopus 로고
    • Nanofluidic diodes
    • 10.1039/b822554k
    • Cheng L.-J. Guo L.J. Nanofluidic diodes. Chem. Soc. Rev. 2010, 39:923. 10.1039/b822554k
    • (2010) Chem. Soc. Rev. , vol.39 , pp. 923
    • Cheng, L.-J.1    Guo, L.J.2
  • 13
    • 80053394411 scopus 로고    scopus 로고
    • Shift of isoelectric point in extended nanospace investigated by streaming current measurement
    • 10.1063/1.3644481
    • Morikawa K. Mawatari K. Kazoe Y. Tsukahara T. Kitamori T. Shift of isoelectric point in extended nanospace investigated by streaming current measurement. Appl. Phys. Lett. 2011, 99:123115. 10.1063/1.3644481
    • (2011) Appl. Phys. Lett. , vol.99 , pp. 123115
    • Morikawa, K.1    Mawatari, K.2    Kazoe, Y.3    Tsukahara, T.4    Kitamori, T.5
  • 14
    • 4344568092 scopus 로고    scopus 로고
    • Surface-charge-governed ion transport in nanofluidic channels
    • 10.1103/PhysRevLett.93.035901
    • Stein D. Kruithof M. Dekker C. Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 2004, 93:035901. 10.1103/PhysRevLett.93.035901
    • (2004) Phys. Rev. Lett. , vol.93 , pp. 035901
    • Stein, D.1    Kruithof, M.2    Dekker, C.3
  • 15
    • 70349383844 scopus 로고    scopus 로고
    • A perspective on streaming current in silica nanofluidic channels: Poisson-Boltzmann model versus Poisson-Nernst-Planck model
    • 10.1016/j.jcis.2009.07.056
    • Chang C.-C. Yang R.-J. A perspective on streaming current in silica nanofluidic channels: Poisson-Boltzmann model versus Poisson-Nernst-Planck model. J. Colloid Interface Sci. 2009, 339:517. 10.1016/j.jcis.2009.07.056
    • (2009) J. Colloid Interface Sci. , vol.339 , pp. 517
    • Chang, C.-C.1    Yang, R.-J.2
  • 16
    • 74549219446 scopus 로고    scopus 로고
    • Electroviscous effects in nanofluidic channels
    • 10.1063/1.3290814
    • Wang M. Chang C.-C. Yang R.-J. Electroviscous effects in nanofluidic channels. J. Chem. Phys. 2010, 132:024701. 10.1063/1.3290814
    • (2010) J. Chem. Phys. , vol.132 , pp. 024701
    • Wang, M.1    Chang, C.-C.2    Yang, R.-J.3
  • 17
    • 48949085105 scopus 로고    scopus 로고
    • Electrokinetics in nanochannels: Part I. Electrical double layer overlap and channel-to-well equilibrium
    • 10.1016/j.jcis.2008.06.007
    • Baldessari F. Santiago J.G. Electrokinetics in nanochannels: Part I. Electrical double layer overlap and channel-to-well equilibrium. J. Colloid Interface Sci. 2008, 325:526. 10.1016/j.jcis.2008.06.007
    • (2008) J. Colloid Interface Sci. , vol.325 , pp. 526
    • Baldessari, F.1    Santiago, J.G.2
  • 18
    • 0012556633 scopus 로고
    • Electrokinetic flow in fine capillary channels
    • 10.1021/j100704a031
    • Hildreth D. Electrokinetic flow in fine capillary channels. J. Phys. Chem. 1970, 74:2006. 10.1021/j100704a031
    • (1970) J. Phys. Chem. , vol.74 , pp. 2006
    • Hildreth, D.1
  • 19
    • 25844527068 scopus 로고
    • Theory of electrokinetic flow in a narrow parallel-plate channel
    • 10.1039/f29757100001
    • Levine S. Marriott J.R. Robinson K. Theory of electrokinetic flow in a narrow parallel-plate channel. J. Chem. Soc., Faraday Trans. 2 1975, 71:1. 10.1039/f29757100001
    • (1975) J. Chem. Soc., Faraday Trans. 2 , vol.71 , pp. 1
    • Levine, S.1    Marriott, J.R.2    Robinson, K.3
  • 20
    • 27144446682 scopus 로고    scopus 로고
    • Streaming currents in a single nanofluidic channel
    • 10.1103/PhysRevLett.95.116104
    • van der Heyden F.H. J. Stein D. Dekker C. Streaming currents in a single nanofluidic channel. Phys. Rev. Lett. 2005, 95:116104. 10.1103/PhysRevLett.95.116104
    • (2005) Phys. Rev. Lett. , vol.95 , pp. 116104
    • van der Heyden, F.H.J.1    Stein, D.2    Dekker, C.3
  • 21
    • 33750501126 scopus 로고    scopus 로고
    • Electrokinetic energy conversion efficiency in nanofluidic channels
    • 10.1021/nl061524l
    • van der Heyden F.H. J. Bonthuis D.J. Stein D. Meyer C. Dekker C. Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett. 2006, 6:2232. 10.1021/nl061524l
    • (2006) Nano Lett. , vol.6 , pp. 2232
    • van der Heyden, F.H.J.1    Bonthuis, D.J.2    Stein, D.3    Meyer, C.4    Dekker, C.5
  • 22
    • 39349109597 scopus 로고    scopus 로고
    • Electroviscous effects in capillary filling of nanochannels
    • 10.1063/1.2857470
    • Mortensen N.A. Kristensen A. Electroviscous effects in capillary filling of nanochannels. Appl. Phys. Lett. 2008, 92:063110. 10.1063/1.2857470
    • (2008) Appl. Phys. Lett. , vol.92 , pp. 063110
    • Mortensen, N.A.1    Kristensen, A.2
  • 23
    • 0034655170 scopus 로고    scopus 로고
    • A model for overlapped EDL fields
    • 10.1006/jcis.1999.6708
    • Qu W. Li D. A model for overlapped EDL fields. J. Colloid Interface Sci. 2000, 224:397. 10.1006/jcis.1999.6708
    • (2000) J. Colloid Interface Sci. , vol.224 , pp. 397
    • Qu, W.1    Li, D.2
  • 24
    • 0017981649 scopus 로고
    • Ionizable surface group model for aqueous interfaces
    • 10.1016/0001-8686(78)85002-7
    • Healy T.W. White L.R. Ionizable surface group model for aqueous interfaces. Adv. Colloid Interface Sci. 1978, 9:303. 10.1016/0001-8686(78)85002-7
    • (1978) Adv. Colloid Interface Sci. , vol.9 , pp. 303
    • Healy, T.W.1    White, L.R.2
  • 25
    • 2042509694 scopus 로고    scopus 로고
    • Electroviscous effects on pressure-driven flow of dilute electrolyte solutions in small microchannels
    • 10.1016/j.jcis.2003.10.036
    • Ren C.L. Li D. Electroviscous effects on pressure-driven flow of dilute electrolyte solutions in small microchannels. J. Colloid Interface Sci. 2004, 274:319. 10.1016/j.jcis.2003.10.036
    • (2004) J. Colloid Interface Sci. , vol.274 , pp. 319
    • Ren, C.L.1    Li, D.2
  • 26
    • 13844297808 scopus 로고    scopus 로고
    • Improved understanding of the effect of electrical double layer on pressure-driven flow in microchannels
    • 10.1016/j.aca.2004.09.078
    • Ren C.L. Li D. Improved understanding of the effect of electrical double layer on pressure-driven flow in microchannels. Anal. Chim. Acta 2005, 531:15. 10.1016/j.aca.2004.09.078
    • (2005) Anal. Chim. Acta , vol.531 , pp. 15
    • Ren, C.L.1    Li, D.2
  • 27
    • 33947504492 scopus 로고    scopus 로고
    • Electrokinetic behavior of overlapped electric double layers in nanofluidic channels
    • 10.1088/0957-4484/18/11/115701
    • Huang K.D. Yang R.-J. Electrokinetic behavior of overlapped electric double layers in nanofluidic channels. Nanotechnology 2007, 18:115701. 10.1088/0957-4484/18/11/115701
    • (2007) Nanotechnology , vol.18 , pp. 115701
    • Huang, K.D.1    Yang, R.-J.2
  • 28
    • 0035828667 scopus 로고    scopus 로고
    • The charge of glass and silica surfaces
    • 10.1063/1.1404988
    • Behrens S.H. Grier D.G. The charge of glass and silica surfaces. J. Chem. Phys. 2001, 115:6716. 10.1063/1.1404988
    • (2001) J. Chem. Phys. , vol.115 , pp. 6716
    • Behrens, S.H.1    Grier, D.G.2
  • 29
    • 77950933658 scopus 로고    scopus 로고
    • Modeling of electrokinetic transport in silica nanofluidic channels
    • 10.1016/j.aca.2010.02.018
    • Wang M. Kang Q. Ben-Naim E. Modeling of electrokinetic transport in silica nanofluidic channels. Anal. Chim. Acta 2010, 664:158. 10.1016/j.aca.2010.02.018
    • (2010) Anal. Chim. Acta , vol.664 , pp. 158
    • Wang, M.1    Kang, Q.2    Ben-Naim, E.3
  • 30
    • 77956287795 scopus 로고    scopus 로고
    • Electrochemomechanical energy conversion efficiency in silica nanofluidic channels
    • 10.1007/s10404-009-0530-6
    • Wang M. Kang Q. Electrochemomechanical energy conversion efficiency in silica nanofluidic channels. Microfluid. Nanofluid. 2010, 9:181. 10.1007/s10404-009-0530-6
    • (2010) Microfluid. Nanofluid. , vol.9 , pp. 181
    • Wang, M.1    Kang, Q.2
  • 31
    • 0842287331 scopus 로고    scopus 로고
    • Ion transport in nanofluidic channels
    • 10.1021/nl0348185
    • Daiguji H. Yang P. Majumdar A. Ion transport in nanofluidic channels. Nano Lett. 2004, 4:137. 10.1021/nl0348185
    • (2004) Nano Lett. , vol.4 , pp. 137
    • Daiguji, H.1    Yang, P.2    Majumdar, A.3
  • 32
    • 10844293666 scopus 로고    scopus 로고
    • Electrochemomechanical energy conversion in nanofluidic channels
    • 10.1021/nl0489945
    • Daiguji H. Yang P. Szeri A. Majumdar A. Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett. 2004, 4:2315. 10.1021/nl0489945
    • (2004) Nano Lett. , vol.4 , pp. 2315
    • Daiguji, H.1    Yang, P.2    Szeri, A.3    Majumdar, A.4
  • 33
    • 77956264744 scopus 로고    scopus 로고
    • Electrokinetic energy conversion in micrometer-length nanofluidic channels
    • 10.1007/s10404-009-0538-y
    • Chang C.-C. Yang R.-J. Electrokinetic energy conversion in micrometer-length nanofluidic channels. Microfluid. Nanofluid. 2010, 9:225. 10.1007/s10404-009-0538-y
    • (2010) Microfluid. Nanofluid. , vol.9 , pp. 225
    • Chang, C.-C.1    Yang, R.-J.2
  • 34
    • 33847416713 scopus 로고    scopus 로고
    • Liquid slip in micro-and nanofluidics: Recent research and its possible implications
    • 10.1039/b700364c
    • Eijkel J. Liquid slip in micro-and nanofluidics: Recent research and its possible implications. Lab Chip 2007, 7:299. 10.1039/b700364c
    • (2007) Lab Chip , vol.7 , pp. 299
    • Eijkel, J.1
  • 36
    • 40949083517 scopus 로고    scopus 로고
    • Zeta potential and electro-osmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 2. slip and interfacial water structure
    • 10.1002/elps.200800735
    • Tandon V. Kirby B. Zeta potential and electro-osmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 2. slip and interfacial water structure. Electrophoresis 2008, 29:1102. 10.1002/elps.200800735
    • (2008) Electrophoresis , vol.29 , pp. 1102
    • Tandon, V.1    Kirby, B.2
  • 37
    • 77952827224 scopus 로고    scopus 로고
    • Slip on superhydrophobic surfaces
    • 10.1146/annurev-fluid-121108-145558
    • Rothstein J.P. Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 2010, 42:89. 10.1146/annurev-fluid-121108-145558
    • (2010) Annu. Rev. Fluid Mech. , vol.42 , pp. 89
    • Rothstein, J.P.1
  • 38
    • 77949309131 scopus 로고    scopus 로고
    • Investigating slippage, droplet breakup, and synthesizing microcapsules in microfluidic systems
    • 10.1063/1.3323086
    • Tabeling P. Investigating slippage, droplet breakup, and synthesizing microcapsules in microfluidic systems. Phys. Fluids 2010, 22:021302. 10.1063/1.3323086
    • (2010) Phys. Fluids , vol.22 , pp. 021302
    • Tabeling, P.1
  • 39
    • 34249094201 scopus 로고    scopus 로고
    • Flow boundary conditions from nano- to microscales
    • 10.1039/b616490k
    • Bocquet L. Barrat J.-L. Flow boundary conditions from nano- to microscales. Soft Matter 2007, 3:685. 10.1039/b616490k
    • (2007) Soft Matter , vol.3 , pp. 685
    • Bocquet, L.1    Barrat, J.-L.2
  • 40
    • 56849110938 scopus 로고    scopus 로고
    • Water slippage versus contact angle: A quasiuniversal relationship
    • 10.1103/PhysRevLett.101.226101
    • Huang D.M. Sendner C. Horinek D. Netz R.R. Bocquet L. Water slippage versus contact angle: A quasiuniversal relationship. Phys. Rev. Lett. 2008, 101:226101. 10.1103/PhysRevLett.101.226101
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 226101
    • Huang, D.M.1    Sendner, C.2    Horinek, D.3    Netz, R.R.4    Bocquet, L.5
  • 41
    • 79955022795 scopus 로고    scopus 로고
    • A smooth future?
    • 10.1038/nmat2994
    • Bocquet L. Lauga E. A smooth future?. Nature Mater. 2011, 10:335. 10.1038/nmat2994
    • (2011) Nature Mater. , vol.10 , pp. 335
    • Bocquet, L.1    Lauga, E.2
  • 42
    • 0141792538 scopus 로고    scopus 로고
    • Effective slip in pressure-driven Stokes flow
    • 10.1017/S0022112003004695
    • Lauga E. Stone H.A. Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 2003, 489:55. 10.1017/S0022112003004695
    • (2003) J. Fluid Mech. , vol.489 , pp. 55
    • Lauga, E.1    Stone, H.A.2
  • 43
    • 0036503701 scopus 로고    scopus 로고
    • Apparent fluid slip at hydrophobic microchannel walls
    • 10.1063/1.1432696
    • Tretheway D.C. Meinhart C.D. Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 2002, 14:L9. 10.1063/1.1432696
    • (2002) Phys. Fluids , vol.14
    • Tretheway, D.C.1    Meinhart, C.D.2
  • 44
    • 0242349742 scopus 로고    scopus 로고
    • Apparent slips in hydrophilic and hydrophobic microchannels
    • 10.1063/1.1605425
    • Choi C.-H. Westin K.J. A. Breuer K.S. Apparent slips in hydrophilic and hydrophobic microchannels. Phys. Fluids 2003, 15:2897. 10.1063/1.1605425
    • (2003) Phys. Fluids , vol.15 , pp. 2897
    • Choi, C.-H.1    Westin, K.J.A.2    Breuer, K.S.3
  • 45
    • 2442713765 scopus 로고    scopus 로고
    • A generating mechanism for apparent fluid slip in hydrophobic microchannels
    • 10.1063/1.1669400
    • Tretheway D.C. Meinhart C.D. A generating mechanism for apparent fluid slip in hydrophobic microchannels. Phys. Fluids 2004, 16:1509. 10.1063/1.1669400
    • (2004) Phys. Fluids , vol.16 , pp. 1509
    • Tretheway, D.C.1    Meinhart, C.D.2
  • 48
    • 33847647562 scopus 로고    scopus 로고
    • Direct measurement of slip length in electrolyte solutions
    • 10.1063/1.2539829
    • Huang P. Breuer K.S. Direct measurement of slip length in electrolyte solutions. Phys. Fluids 2007, 19:028104. 10.1063/1.2539829
    • (2007) Phys. Fluids , vol.19 , pp. 028104
    • Huang, P.1    Breuer, K.S.2
  • 49
    • 51749114613 scopus 로고    scopus 로고
    • Hydrodynamics within the electric double layer on slipping surfaces
    • 10.1103/PhysRevLett.101.114503
    • Bouzigues C.I. Tabeling P. Bocquet L. Hydrodynamics within the electric double layer on slipping surfaces. Phys. Rev. Lett. 2008, 101:114503. 10.1103/PhysRevLett.101.114503
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 114503
    • Bouzigues, C.I.1    Tabeling, P.2    Bocquet, L.3
  • 50
    • 33751579758 scopus 로고    scopus 로고
    • Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics
    • 10.1063/1.2382943
    • Joly L. Ybert C. Trizac E. Bocquet L. Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics. J. Chem. Phys. 2006, 125:204715. 10.1063/1.2382943
    • (2006) J. Chem. Phys. , vol.125 , pp. 204715
    • Joly, L.1    Ybert, C.2    Trizac, E.3    Bocquet, L.4
  • 51
    • 77958038234 scopus 로고    scopus 로고
    • Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction
    • 10.1021/nl1021046
    • Falk K. Sedlmeier F. Joly L. Netz R.R. Bocquet L. Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction. Nano Lett. 2010, 10:4067. 10.1021/nl1021046
    • (2010) Nano Lett. , vol.10 , pp. 4067
    • Falk, K.1    Sedlmeier, F.2    Joly, L.3    Netz, R.R.4    Bocquet, L.5
  • 52
    • 78149354829 scopus 로고    scopus 로고
    • Comment on 'Pumping of confined water in carbon nanotubes by rotation-translation coupling
    • 10.1103/PhysRevLett.105.209401
    • Bonthuis D.J. Falk K. Kaplan C.N. Horinek D. Berker A.N. Bocquet L. Netz R.R. Comment on 'Pumping of confined water in carbon nanotubes by rotation-translation coupling. Phys. Rev. Lett. 2010, 105:209401. 10.1103/PhysRevLett.105.209401
    • (2010) Phys. Rev. Lett. , vol.105 , pp. 209401
    • Bonthuis, D.J.1    Falk, K.2    Kaplan, C.N.3    Horinek, D.4    Berker, A.N.5    Bocquet, L.6    Netz, R.R.7
  • 53
    • 53549124942 scopus 로고    scopus 로고
    • Electrokinetic flows over inhomogeneously slippage surfaces
    • 10.1063/1.2978954
    • Squires T.M. Electrokinetic flows over inhomogeneously slippage surfaces. Phys. Fluids 2008, 20:092105. 10.1063/1.2978954
    • (2008) Phys. Fluids , vol.20 , pp. 092105
    • Squires, T.M.1
  • 54
    • 80155127322 scopus 로고    scopus 로고
    • Electrokinetic flows through a parallel-plate channel with slipping strips on walls
    • 10.1063/1.3647582
    • Ng C.-O. Chu H.C. W. Electrokinetic flows through a parallel-plate channel with slipping strips on walls. Phys. Fluids 2011, 23:102002. 10.1063/1.3647582
    • (2011) Phys. Fluids , vol.23 , pp. 102002
    • Ng, C.-O.1    Chu, H.C.W.2
  • 55
    • 40049085954 scopus 로고    scopus 로고
    • Electrokinetic energy conversion in slip nanochannels
    • 10.1016/j.jpowsour.2007.12.050
    • Davidson C. Xuan X. Electrokinetic energy conversion in slip nanochannels. J. Power Sources 2008, 179:297. 10.1016/j.jpowsour.2007.12.050
    • (2008) J. Power Sources , vol.179 , pp. 297
    • Davidson, C.1    Xuan, X.2
  • 56
    • 42549144108 scopus 로고    scopus 로고
    • Slip-enhanced electrokinetic energy conversion in nanofluidic channels
    • 10.1088/0957-4484/19/19/195707
    • Ren Y. Stein D. Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology 2008, 19:195707. 10.1088/0957-4484/19/19/195707
    • (2008) Nanotechnology , vol.19 , pp. 195707
    • Ren, Y.1    Stein, D.2
  • 57
    • 80052419597 scopus 로고    scopus 로고
    • Electrokinetic energy conversion efficiency in ion-selective nanopores
    • 10.1063/1.3625921
    • Chang C.-C. Yang R.-J. Electrokinetic energy conversion efficiency in ion-selective nanopores. Appl. Phys. Lett. 2011, 99:083102. 10.1063/1.3625921
    • (2011) Appl. Phys. Lett. , vol.99 , pp. 083102
    • Chang, C.-C.1    Yang, R.-J.2
  • 58
    • 70349469633 scopus 로고    scopus 로고
    • Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part I: Acid-base equilibria and pH buffers
    • 10.1039/b906465f
    • Persat A. Chambers R.D. Santiago J.G. Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part I: Acid-base equilibria and pH buffers. Lab Chip 2009, 9:2437. 10.1039/b906465f
    • (2009) Lab Chip , vol.9 , pp. 2437
    • Persat, A.1    Chambers, R.D.2    Santiago, J.G.3
  • 59
    • 79961088492 scopus 로고    scopus 로고
    • Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels
    • 10.1103/PhysRevE.83.056307
    • Jensen K.L. Kristensen J.T. Crumrine A.M. Andersen M.B. Bruus H. Pennathur S. Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels. Phys. Rev. E 2011, 83:056307. 10.1103/PhysRevE.83.056307
    • (2011) Phys. Rev. E , vol.83 , pp. 056307
    • Jensen, K.L.1    Kristensen, J.T.2    Crumrine, A.M.3    Andersen, M.B.4    Bruus, H.5    Pennathur, S.6
  • 62
    • 36149006492 scopus 로고
    • Reciprocal relations in irreversible processes. I
    • 10.1103/PhysRev.37.405
    • Onsager L. Reciprocal relations in irreversible processes. I. Phys. Rev. 1931, 37:405. 10.1103/PhysRev.37.405
    • (1931) Phys. Rev. , vol.37 , pp. 405
    • Onsager, L.1
  • 63
    • 41449100665 scopus 로고    scopus 로고
    • Streaming potential and electroviscous effect in heterogeneous microchannels
    • 10.1007/s10404-007-0205-0
    • Xuan X. Streaming potential and electroviscous effect in heterogeneous microchannels. Microfluid. Nanofluid. 2008, 4:457. 10.1007/s10404-007-0205-0
    • (2008) Microfluid. Nanofluid. , vol.4 , pp. 457
    • Xuan, X.1
  • 64
    • 77951612417 scopus 로고    scopus 로고
    • Nanofluidics, from bulk to interfaces
    • 10.1039/b909366b
    • Bocquet L. Charlaix E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 2010, 39:1073. 10.1039/b909366b
    • (2010) Chem. Soc. Rev. , vol.39 , pp. 1073
    • Bocquet, L.1    Charlaix, E.2
  • 65
    • 24344451308 scopus 로고    scopus 로고
    • Ion transport through nanoslits dominated by the effective surface charge
    • 10.1063/1.1954899
    • Schoch R.B. Renaud P. Ion transport through nanoslits dominated by the effective surface charge. Appl. Phys. Lett. 2005, 86:253111. 10.1063/1.1954899
    • (2005) Appl. Phys. Lett. , vol.86 , pp. 253111
    • Schoch, R.B.1    Renaud, P.2
  • 66
    • 33645744236 scopus 로고    scopus 로고
    • Effect of the surface charge on ion transport through nanoslits
    • 10.1063/1.1896936
    • Schoch R.B. Lintel H. Renaud P. Effect of the surface charge on ion transport through nanoslits. Phys. Fluids 2005, 17:100604. 10.1063/1.1896936
    • (2005) Phys. Fluids , vol.17 , pp. 100604
    • Schoch, R.B.1    Lintel, H.2    Renaud, P.3
  • 68
    • 0000295028 scopus 로고    scopus 로고
    • Electrostatic interaction of colloidal surfaces with variable charge
    • 10.1021/jp984099w
    • Behrens S.H. Borkovec M. Electrostatic interaction of colloidal surfaces with variable charge. J. Phys. Chem. B 1999, 103:2918. 10.1021/jp984099w
    • (1999) J. Phys. Chem. B , vol.103 , pp. 2918
    • Behrens, S.H.1    Borkovec, M.2
  • 69
    • 54949130153 scopus 로고    scopus 로고
    • Electric energy generation in single track-etched nanopores
    • 10.1063/1.3001590
    • Xie Y. Wang X. Xue J. Jin K. Chen L. Wang Y. Electric energy generation in single track-etched nanopores. Appl. Phys. Lett. 2008, 93:163116. 10.1063/1.3001590, ,.
    • (2008) Appl. Phys. Lett. , vol.93 , pp. 163116
    • Xie, Y.1    Wang, X.2    Xue, J.3    Jin, K.4    Chen, L.5    Wang, Y.6
  • 70
    • 67650293614 scopus 로고    scopus 로고
    • Surface charge density of the track-etched nanopores in polyethylene terephthalate foils
    • 10.1063/1.3130988
    • Xue J. Xie Y. Yan Y. Jin K. Wang Y. Surface charge density of the track-etched nanopores in polyethylene terephthalate foils. Biomicrofluidics 2009, 3:022408. 10.1063/1.3130988
    • (2009) Biomicrofluidics , vol.3 , pp. 022408
    • Xue, J.1    Xie, Y.2    Yan, Y.3    Jin, K.4    Wang, Y.5
  • 71
    • 74449092011 scopus 로고    scopus 로고
    • Electrochemical charge of silica surfaces at high ionic strength in narrow channels
    • 10.1016/j.jcis.2009.11.039
    • Wang M. Revil A. Electrochemical charge of silica surfaces at high ionic strength in narrow channels. J. Colloid Interface Sci. 2010, 343:381. 10.1016/j.jcis.2009.11.039
    • (2010) J. Colloid Interface Sci. , vol.343 , pp. 381
    • Wang, M.1    Revil, A.2
  • 72
    • 77958483935 scopus 로고    scopus 로고
    • Surface-dependent chemical equilibrium constants and capacitances for bare and 3-cyanopropyldimethylchlorosilane coated silica nanochannels
    • 10.1016/j.jcis.2010.09.025
    • Andersen M.B. Frey J. Pennathur S. Bruus H. Surface-dependent chemical equilibrium constants and capacitances for bare and 3-cyanopropyldimethylchlorosilane coated silica nanochannels. J. Colloid Interface Sci. 2011, 353:301. 10.1016/j.jcis.2010.09.025
    • (2011) J. Colloid Interface Sci. , vol.353 , pp. 301
    • Andersen, M.B.1    Frey, J.2    Pennathur, S.3    Bruus, H.4
  • 73
    • 0028895922 scopus 로고
    • The measurement of ionic conductivities and mobilities of certain less common organic anions needed for junction potential corrections in electrophysiology
    • +(tris buffer ion) are, respectively, 2.05 × 10-7 (Ref. 60), 4.621 × 10-8 (Ref. 60), and 3.05 × 10-8 m2/Vs [ ].
    • +(tris buffer ion) are, respectively, 2.05 × 10-7 (Ref. 60), 4.621 × 10-8 (Ref. 60), and 3.05 × 10-8 m2/Vs
    • (1995) J. Neurosci. Methods , vol.56 , pp. 37
    • Ng, B.1    Barry, P.H.2
  • 74
    • 0035962977 scopus 로고    scopus 로고
    • Surface conduction
    • 10.1088/0953-8984/13/21/326
    • Lyklema J. Surface conduction. J Phys. Condens. Matter 2001, 13:5027. 10.1088/0953-8984/13/21/326
    • (2001) J Phys. Condens. Matter , vol.13 , pp. 5027
    • Lyklema, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.