-
1
-
-
49449090221
-
Transport phenomena in nanofluidics
-
10.1103/RevModPhys.80.839
-
Schoch R.B. Han J. Renaud P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 2008, 80:839. 10.1103/RevModPhys.80.839
-
(2008)
Rev. Mod. Phys.
, vol.80
, pp. 839
-
-
Schoch, R.B.1
Han, J.2
Renaud, P.3
-
2
-
-
33947490107
-
Electrokinetic flow in ultrafine capillary slits
-
10.1021/j100787a019
-
Burgreen D. Nakache F.R. Electrokinetic flow in ultrafine capillary slits. J. Phys. Chem. 1964, 68:1084. 10.1021/j100787a019
-
(1964)
J. Phys. Chem.
, vol.68
, pp. 1084
-
-
Burgreen, D.1
Nakache, F.R.2
-
3
-
-
33947485034
-
Electrokinetic flow in a narrow cylindrical capillary
-
10.1021/j100895a062
-
Rice C.L. Whitehead R. Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 1965, 69:4017. 10.1021/j100895a062
-
(1965)
J. Phys. Chem.
, vol.69
, pp. 4017
-
-
Rice, C.L.1
Whitehead, R.2
-
4
-
-
0037115606
-
Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements
-
10.1021/ac025808b
-
Hibara A. Saito T. Kim H. Tokeshi M. Ooi T. Nakao M. Kitamori T. Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements. Anal. Chem. 2002, 74:6170. 10.1021/ac025808b
-
(2002)
Anal. Chem.
, vol.74
, pp. 6170
-
-
Hibara, A.1
Saito, T.2
Kim, H.3
Tokeshi, M.4
Ooi, T.5
Nakao, M.6
Kitamori, T.7
-
6
-
-
23144436386
-
From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell
-
10.1021/nl050712t
-
Liu S. Pu Q. Gao L. Korzeniewski C. Matzke C. From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell. Nano Lett. 2005, 5:1389. 10.1021/nl050712t
-
(2005)
Nano Lett.
, vol.5
, pp. 1389
-
-
Liu, S.1
Pu, Q.2
Gao, L.3
Korzeniewski, C.4
Matzke, C.5
-
7
-
-
78650015802
-
Anomalous ion transport in 2-nm hydrophilic nanochannels
-
10.1038/nnano.2010.233
-
Duan C. Majumdar A. Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat. Nanotechnol. 2010, 5:851. 10.1038/nnano.2010.233
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 851
-
-
Duan, C.1
Majumdar, A.2
-
8
-
-
84859526715
-
Enhancement of proton mobility in extended-nanospace channels
-
10.1002/anie.201104883
-
Chinen H. Mawatari K. Pihosh Y. Morikawa K. Kazoe Y. Tsukahara T. Kitamori T. Enhancement of proton mobility in extended-nanospace channels. Angew. Chem., Int. Ed. 2012, 51:3573. 10.1002/anie.201104883
-
(2012)
Angew. Chem., Int. Ed.
, vol.51
, pp. 3573
-
-
Chinen, H.1
Mawatari, K.2
Pihosh, Y.3
Morikawa, K.4
Kazoe, Y.5
Tsukahara, T.6
Kitamori, T.7
-
9
-
-
21644437442
-
Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip
-
10.1021/nl050265h
-
Plecis A. Schoch R.B. Renaud P. Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett. 2005, 5:1147. 10.1021/nl050265h
-
(2005)
Nano Lett.
, vol.5
, pp. 1147
-
-
Plecis, A.1
Schoch, R.B.2
Renaud, P.3
-
10
-
-
3042754182
-
Ion-enrichment and ion-depletion effect of nanochannel structures
-
10.1021/nl0494811
-
Pu Q.S. Yun J.S. Temkin H. Liu S.R. Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett. 2004, 4:1099. 10.1021/nl0494811
-
(2004)
Nano Lett.
, vol.4
, pp. 1099
-
-
Pu, Q.S.1
Yun, J.S.2
Temkin, H.3
Liu, S.R.4
-
11
-
-
34547465510
-
Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel
-
10.1103/PhysRevLett.99.044501
-
Kim S.J. Wang Y.-C. Lee J.H. Jang H. Han J. Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys. Rev. Lett. 2007, 99:044501. 10.1103/PhysRevLett.99.044501
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 044501
-
-
Kim, S.J.1
Wang, Y.-C.2
Lee, J.H.3
Jang, H.4
Han, J.5
-
12
-
-
77952539304
-
Nanofluidic diodes
-
10.1039/b822554k
-
Cheng L.-J. Guo L.J. Nanofluidic diodes. Chem. Soc. Rev. 2010, 39:923. 10.1039/b822554k
-
(2010)
Chem. Soc. Rev.
, vol.39
, pp. 923
-
-
Cheng, L.-J.1
Guo, L.J.2
-
13
-
-
80053394411
-
Shift of isoelectric point in extended nanospace investigated by streaming current measurement
-
10.1063/1.3644481
-
Morikawa K. Mawatari K. Kazoe Y. Tsukahara T. Kitamori T. Shift of isoelectric point in extended nanospace investigated by streaming current measurement. Appl. Phys. Lett. 2011, 99:123115. 10.1063/1.3644481
-
(2011)
Appl. Phys. Lett.
, vol.99
, pp. 123115
-
-
Morikawa, K.1
Mawatari, K.2
Kazoe, Y.3
Tsukahara, T.4
Kitamori, T.5
-
14
-
-
4344568092
-
Surface-charge-governed ion transport in nanofluidic channels
-
10.1103/PhysRevLett.93.035901
-
Stein D. Kruithof M. Dekker C. Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 2004, 93:035901. 10.1103/PhysRevLett.93.035901
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 035901
-
-
Stein, D.1
Kruithof, M.2
Dekker, C.3
-
15
-
-
70349383844
-
A perspective on streaming current in silica nanofluidic channels: Poisson-Boltzmann model versus Poisson-Nernst-Planck model
-
10.1016/j.jcis.2009.07.056
-
Chang C.-C. Yang R.-J. A perspective on streaming current in silica nanofluidic channels: Poisson-Boltzmann model versus Poisson-Nernst-Planck model. J. Colloid Interface Sci. 2009, 339:517. 10.1016/j.jcis.2009.07.056
-
(2009)
J. Colloid Interface Sci.
, vol.339
, pp. 517
-
-
Chang, C.-C.1
Yang, R.-J.2
-
16
-
-
74549219446
-
Electroviscous effects in nanofluidic channels
-
10.1063/1.3290814
-
Wang M. Chang C.-C. Yang R.-J. Electroviscous effects in nanofluidic channels. J. Chem. Phys. 2010, 132:024701. 10.1063/1.3290814
-
(2010)
J. Chem. Phys.
, vol.132
, pp. 024701
-
-
Wang, M.1
Chang, C.-C.2
Yang, R.-J.3
-
17
-
-
48949085105
-
Electrokinetics in nanochannels: Part I. Electrical double layer overlap and channel-to-well equilibrium
-
10.1016/j.jcis.2008.06.007
-
Baldessari F. Santiago J.G. Electrokinetics in nanochannels: Part I. Electrical double layer overlap and channel-to-well equilibrium. J. Colloid Interface Sci. 2008, 325:526. 10.1016/j.jcis.2008.06.007
-
(2008)
J. Colloid Interface Sci.
, vol.325
, pp. 526
-
-
Baldessari, F.1
Santiago, J.G.2
-
18
-
-
0012556633
-
Electrokinetic flow in fine capillary channels
-
10.1021/j100704a031
-
Hildreth D. Electrokinetic flow in fine capillary channels. J. Phys. Chem. 1970, 74:2006. 10.1021/j100704a031
-
(1970)
J. Phys. Chem.
, vol.74
, pp. 2006
-
-
Hildreth, D.1
-
19
-
-
25844527068
-
Theory of electrokinetic flow in a narrow parallel-plate channel
-
10.1039/f29757100001
-
Levine S. Marriott J.R. Robinson K. Theory of electrokinetic flow in a narrow parallel-plate channel. J. Chem. Soc., Faraday Trans. 2 1975, 71:1. 10.1039/f29757100001
-
(1975)
J. Chem. Soc., Faraday Trans. 2
, vol.71
, pp. 1
-
-
Levine, S.1
Marriott, J.R.2
Robinson, K.3
-
20
-
-
27144446682
-
Streaming currents in a single nanofluidic channel
-
10.1103/PhysRevLett.95.116104
-
van der Heyden F.H. J. Stein D. Dekker C. Streaming currents in a single nanofluidic channel. Phys. Rev. Lett. 2005, 95:116104. 10.1103/PhysRevLett.95.116104
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 116104
-
-
van der Heyden, F.H.J.1
Stein, D.2
Dekker, C.3
-
22
-
-
39349109597
-
Electroviscous effects in capillary filling of nanochannels
-
10.1063/1.2857470
-
Mortensen N.A. Kristensen A. Electroviscous effects in capillary filling of nanochannels. Appl. Phys. Lett. 2008, 92:063110. 10.1063/1.2857470
-
(2008)
Appl. Phys. Lett.
, vol.92
, pp. 063110
-
-
Mortensen, N.A.1
Kristensen, A.2
-
23
-
-
0034655170
-
A model for overlapped EDL fields
-
10.1006/jcis.1999.6708
-
Qu W. Li D. A model for overlapped EDL fields. J. Colloid Interface Sci. 2000, 224:397. 10.1006/jcis.1999.6708
-
(2000)
J. Colloid Interface Sci.
, vol.224
, pp. 397
-
-
Qu, W.1
Li, D.2
-
24
-
-
0017981649
-
Ionizable surface group model for aqueous interfaces
-
10.1016/0001-8686(78)85002-7
-
Healy T.W. White L.R. Ionizable surface group model for aqueous interfaces. Adv. Colloid Interface Sci. 1978, 9:303. 10.1016/0001-8686(78)85002-7
-
(1978)
Adv. Colloid Interface Sci.
, vol.9
, pp. 303
-
-
Healy, T.W.1
White, L.R.2
-
25
-
-
2042509694
-
Electroviscous effects on pressure-driven flow of dilute electrolyte solutions in small microchannels
-
10.1016/j.jcis.2003.10.036
-
Ren C.L. Li D. Electroviscous effects on pressure-driven flow of dilute electrolyte solutions in small microchannels. J. Colloid Interface Sci. 2004, 274:319. 10.1016/j.jcis.2003.10.036
-
(2004)
J. Colloid Interface Sci.
, vol.274
, pp. 319
-
-
Ren, C.L.1
Li, D.2
-
26
-
-
13844297808
-
Improved understanding of the effect of electrical double layer on pressure-driven flow in microchannels
-
10.1016/j.aca.2004.09.078
-
Ren C.L. Li D. Improved understanding of the effect of electrical double layer on pressure-driven flow in microchannels. Anal. Chim. Acta 2005, 531:15. 10.1016/j.aca.2004.09.078
-
(2005)
Anal. Chim. Acta
, vol.531
, pp. 15
-
-
Ren, C.L.1
Li, D.2
-
27
-
-
33947504492
-
Electrokinetic behavior of overlapped electric double layers in nanofluidic channels
-
10.1088/0957-4484/18/11/115701
-
Huang K.D. Yang R.-J. Electrokinetic behavior of overlapped electric double layers in nanofluidic channels. Nanotechnology 2007, 18:115701. 10.1088/0957-4484/18/11/115701
-
(2007)
Nanotechnology
, vol.18
, pp. 115701
-
-
Huang, K.D.1
Yang, R.-J.2
-
28
-
-
0035828667
-
The charge of glass and silica surfaces
-
10.1063/1.1404988
-
Behrens S.H. Grier D.G. The charge of glass and silica surfaces. J. Chem. Phys. 2001, 115:6716. 10.1063/1.1404988
-
(2001)
J. Chem. Phys.
, vol.115
, pp. 6716
-
-
Behrens, S.H.1
Grier, D.G.2
-
29
-
-
77950933658
-
Modeling of electrokinetic transport in silica nanofluidic channels
-
10.1016/j.aca.2010.02.018
-
Wang M. Kang Q. Ben-Naim E. Modeling of electrokinetic transport in silica nanofluidic channels. Anal. Chim. Acta 2010, 664:158. 10.1016/j.aca.2010.02.018
-
(2010)
Anal. Chim. Acta
, vol.664
, pp. 158
-
-
Wang, M.1
Kang, Q.2
Ben-Naim, E.3
-
30
-
-
77956287795
-
Electrochemomechanical energy conversion efficiency in silica nanofluidic channels
-
10.1007/s10404-009-0530-6
-
Wang M. Kang Q. Electrochemomechanical energy conversion efficiency in silica nanofluidic channels. Microfluid. Nanofluid. 2010, 9:181. 10.1007/s10404-009-0530-6
-
(2010)
Microfluid. Nanofluid.
, vol.9
, pp. 181
-
-
Wang, M.1
Kang, Q.2
-
31
-
-
0842287331
-
Ion transport in nanofluidic channels
-
10.1021/nl0348185
-
Daiguji H. Yang P. Majumdar A. Ion transport in nanofluidic channels. Nano Lett. 2004, 4:137. 10.1021/nl0348185
-
(2004)
Nano Lett.
, vol.4
, pp. 137
-
-
Daiguji, H.1
Yang, P.2
Majumdar, A.3
-
32
-
-
10844293666
-
Electrochemomechanical energy conversion in nanofluidic channels
-
10.1021/nl0489945
-
Daiguji H. Yang P. Szeri A. Majumdar A. Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett. 2004, 4:2315. 10.1021/nl0489945
-
(2004)
Nano Lett.
, vol.4
, pp. 2315
-
-
Daiguji, H.1
Yang, P.2
Szeri, A.3
Majumdar, A.4
-
33
-
-
77956264744
-
Electrokinetic energy conversion in micrometer-length nanofluidic channels
-
10.1007/s10404-009-0538-y
-
Chang C.-C. Yang R.-J. Electrokinetic energy conversion in micrometer-length nanofluidic channels. Microfluid. Nanofluid. 2010, 9:225. 10.1007/s10404-009-0538-y
-
(2010)
Microfluid. Nanofluid.
, vol.9
, pp. 225
-
-
Chang, C.-C.1
Yang, R.-J.2
-
34
-
-
33847416713
-
Liquid slip in micro-and nanofluidics: Recent research and its possible implications
-
10.1039/b700364c
-
Eijkel J. Liquid slip in micro-and nanofluidics: Recent research and its possible implications. Lab Chip 2007, 7:299. 10.1039/b700364c
-
(2007)
Lab Chip
, vol.7
, pp. 299
-
-
Eijkel, J.1
-
36
-
-
40949083517
-
Zeta potential and electro-osmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 2. slip and interfacial water structure
-
10.1002/elps.200800735
-
Tandon V. Kirby B. Zeta potential and electro-osmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 2. slip and interfacial water structure. Electrophoresis 2008, 29:1102. 10.1002/elps.200800735
-
(2008)
Electrophoresis
, vol.29
, pp. 1102
-
-
Tandon, V.1
Kirby, B.2
-
37
-
-
77952827224
-
Slip on superhydrophobic surfaces
-
10.1146/annurev-fluid-121108-145558
-
Rothstein J.P. Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 2010, 42:89. 10.1146/annurev-fluid-121108-145558
-
(2010)
Annu. Rev. Fluid Mech.
, vol.42
, pp. 89
-
-
Rothstein, J.P.1
-
38
-
-
77949309131
-
Investigating slippage, droplet breakup, and synthesizing microcapsules in microfluidic systems
-
10.1063/1.3323086
-
Tabeling P. Investigating slippage, droplet breakup, and synthesizing microcapsules in microfluidic systems. Phys. Fluids 2010, 22:021302. 10.1063/1.3323086
-
(2010)
Phys. Fluids
, vol.22
, pp. 021302
-
-
Tabeling, P.1
-
39
-
-
34249094201
-
Flow boundary conditions from nano- to microscales
-
10.1039/b616490k
-
Bocquet L. Barrat J.-L. Flow boundary conditions from nano- to microscales. Soft Matter 2007, 3:685. 10.1039/b616490k
-
(2007)
Soft Matter
, vol.3
, pp. 685
-
-
Bocquet, L.1
Barrat, J.-L.2
-
40
-
-
56849110938
-
Water slippage versus contact angle: A quasiuniversal relationship
-
10.1103/PhysRevLett.101.226101
-
Huang D.M. Sendner C. Horinek D. Netz R.R. Bocquet L. Water slippage versus contact angle: A quasiuniversal relationship. Phys. Rev. Lett. 2008, 101:226101. 10.1103/PhysRevLett.101.226101
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 226101
-
-
Huang, D.M.1
Sendner, C.2
Horinek, D.3
Netz, R.R.4
Bocquet, L.5
-
41
-
-
79955022795
-
A smooth future?
-
10.1038/nmat2994
-
Bocquet L. Lauga E. A smooth future?. Nature Mater. 2011, 10:335. 10.1038/nmat2994
-
(2011)
Nature Mater.
, vol.10
, pp. 335
-
-
Bocquet, L.1
Lauga, E.2
-
42
-
-
0141792538
-
Effective slip in pressure-driven Stokes flow
-
10.1017/S0022112003004695
-
Lauga E. Stone H.A. Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 2003, 489:55. 10.1017/S0022112003004695
-
(2003)
J. Fluid Mech.
, vol.489
, pp. 55
-
-
Lauga, E.1
Stone, H.A.2
-
43
-
-
0036503701
-
Apparent fluid slip at hydrophobic microchannel walls
-
10.1063/1.1432696
-
Tretheway D.C. Meinhart C.D. Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 2002, 14:L9. 10.1063/1.1432696
-
(2002)
Phys. Fluids
, vol.14
-
-
Tretheway, D.C.1
Meinhart, C.D.2
-
44
-
-
0242349742
-
Apparent slips in hydrophilic and hydrophobic microchannels
-
10.1063/1.1605425
-
Choi C.-H. Westin K.J. A. Breuer K.S. Apparent slips in hydrophilic and hydrophobic microchannels. Phys. Fluids 2003, 15:2897. 10.1063/1.1605425
-
(2003)
Phys. Fluids
, vol.15
, pp. 2897
-
-
Choi, C.-H.1
Westin, K.J.A.2
Breuer, K.S.3
-
45
-
-
2442713765
-
A generating mechanism for apparent fluid slip in hydrophobic microchannels
-
10.1063/1.1669400
-
Tretheway D.C. Meinhart C.D. A generating mechanism for apparent fluid slip in hydrophobic microchannels. Phys. Fluids 2004, 16:1509. 10.1063/1.1669400
-
(2004)
Phys. Fluids
, vol.16
, pp. 1509
-
-
Tretheway, D.C.1
Meinhart, C.D.2
-
47
-
-
33646753161
-
Fast mass transport through sub-2-nanometer carbon nanotubes
-
10.1126/science.1126298
-
Holt J.K. Park H.G. Wang Y. Stadermann M. Artyukhin A.B. Grigoropoulos C.P. Noy A. Bakajin O. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 2006, 312:1034-1037. 10.1126/science.1126298
-
(2006)
Science
, vol.312
, pp. 1034-1037
-
-
Holt, J.K.1
Park, H.G.2
Wang, Y.3
Stadermann, M.4
Artyukhin, A.B.5
Grigoropoulos, C.P.6
Noy, A.7
Bakajin, O.8
-
48
-
-
33847647562
-
Direct measurement of slip length in electrolyte solutions
-
10.1063/1.2539829
-
Huang P. Breuer K.S. Direct measurement of slip length in electrolyte solutions. Phys. Fluids 2007, 19:028104. 10.1063/1.2539829
-
(2007)
Phys. Fluids
, vol.19
, pp. 028104
-
-
Huang, P.1
Breuer, K.S.2
-
49
-
-
51749114613
-
Hydrodynamics within the electric double layer on slipping surfaces
-
10.1103/PhysRevLett.101.114503
-
Bouzigues C.I. Tabeling P. Bocquet L. Hydrodynamics within the electric double layer on slipping surfaces. Phys. Rev. Lett. 2008, 101:114503. 10.1103/PhysRevLett.101.114503
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 114503
-
-
Bouzigues, C.I.1
Tabeling, P.2
Bocquet, L.3
-
50
-
-
33751579758
-
Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics
-
10.1063/1.2382943
-
Joly L. Ybert C. Trizac E. Bocquet L. Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics. J. Chem. Phys. 2006, 125:204715. 10.1063/1.2382943
-
(2006)
J. Chem. Phys.
, vol.125
, pp. 204715
-
-
Joly, L.1
Ybert, C.2
Trizac, E.3
Bocquet, L.4
-
51
-
-
77958038234
-
Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction
-
10.1021/nl1021046
-
Falk K. Sedlmeier F. Joly L. Netz R.R. Bocquet L. Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction. Nano Lett. 2010, 10:4067. 10.1021/nl1021046
-
(2010)
Nano Lett.
, vol.10
, pp. 4067
-
-
Falk, K.1
Sedlmeier, F.2
Joly, L.3
Netz, R.R.4
Bocquet, L.5
-
52
-
-
78149354829
-
Comment on 'Pumping of confined water in carbon nanotubes by rotation-translation coupling
-
10.1103/PhysRevLett.105.209401
-
Bonthuis D.J. Falk K. Kaplan C.N. Horinek D. Berker A.N. Bocquet L. Netz R.R. Comment on 'Pumping of confined water in carbon nanotubes by rotation-translation coupling. Phys. Rev. Lett. 2010, 105:209401. 10.1103/PhysRevLett.105.209401
-
(2010)
Phys. Rev. Lett.
, vol.105
, pp. 209401
-
-
Bonthuis, D.J.1
Falk, K.2
Kaplan, C.N.3
Horinek, D.4
Berker, A.N.5
Bocquet, L.6
Netz, R.R.7
-
53
-
-
53549124942
-
Electrokinetic flows over inhomogeneously slippage surfaces
-
10.1063/1.2978954
-
Squires T.M. Electrokinetic flows over inhomogeneously slippage surfaces. Phys. Fluids 2008, 20:092105. 10.1063/1.2978954
-
(2008)
Phys. Fluids
, vol.20
, pp. 092105
-
-
Squires, T.M.1
-
54
-
-
80155127322
-
Electrokinetic flows through a parallel-plate channel with slipping strips on walls
-
10.1063/1.3647582
-
Ng C.-O. Chu H.C. W. Electrokinetic flows through a parallel-plate channel with slipping strips on walls. Phys. Fluids 2011, 23:102002. 10.1063/1.3647582
-
(2011)
Phys. Fluids
, vol.23
, pp. 102002
-
-
Ng, C.-O.1
Chu, H.C.W.2
-
55
-
-
40049085954
-
Electrokinetic energy conversion in slip nanochannels
-
10.1016/j.jpowsour.2007.12.050
-
Davidson C. Xuan X. Electrokinetic energy conversion in slip nanochannels. J. Power Sources 2008, 179:297. 10.1016/j.jpowsour.2007.12.050
-
(2008)
J. Power Sources
, vol.179
, pp. 297
-
-
Davidson, C.1
Xuan, X.2
-
56
-
-
42549144108
-
Slip-enhanced electrokinetic energy conversion in nanofluidic channels
-
10.1088/0957-4484/19/19/195707
-
Ren Y. Stein D. Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology 2008, 19:195707. 10.1088/0957-4484/19/19/195707
-
(2008)
Nanotechnology
, vol.19
, pp. 195707
-
-
Ren, Y.1
Stein, D.2
-
57
-
-
80052419597
-
Electrokinetic energy conversion efficiency in ion-selective nanopores
-
10.1063/1.3625921
-
Chang C.-C. Yang R.-J. Electrokinetic energy conversion efficiency in ion-selective nanopores. Appl. Phys. Lett. 2011, 99:083102. 10.1063/1.3625921
-
(2011)
Appl. Phys. Lett.
, vol.99
, pp. 083102
-
-
Chang, C.-C.1
Yang, R.-J.2
-
58
-
-
70349469633
-
Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part I: Acid-base equilibria and pH buffers
-
10.1039/b906465f
-
Persat A. Chambers R.D. Santiago J.G. Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part I: Acid-base equilibria and pH buffers. Lab Chip 2009, 9:2437. 10.1039/b906465f
-
(2009)
Lab Chip
, vol.9
, pp. 2437
-
-
Persat, A.1
Chambers, R.D.2
Santiago, J.G.3
-
59
-
-
79961088492
-
Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels
-
10.1103/PhysRevE.83.056307
-
Jensen K.L. Kristensen J.T. Crumrine A.M. Andersen M.B. Bruus H. Pennathur S. Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels. Phys. Rev. E 2011, 83:056307. 10.1103/PhysRevE.83.056307
-
(2011)
Phys. Rev. E
, vol.83
, pp. 056307
-
-
Jensen, K.L.1
Kristensen, J.T.2
Crumrine, A.M.3
Andersen, M.B.4
Bruus, H.5
Pennathur, S.6
-
62
-
-
36149006492
-
Reciprocal relations in irreversible processes. I
-
10.1103/PhysRev.37.405
-
Onsager L. Reciprocal relations in irreversible processes. I. Phys. Rev. 1931, 37:405. 10.1103/PhysRev.37.405
-
(1931)
Phys. Rev.
, vol.37
, pp. 405
-
-
Onsager, L.1
-
63
-
-
41449100665
-
Streaming potential and electroviscous effect in heterogeneous microchannels
-
10.1007/s10404-007-0205-0
-
Xuan X. Streaming potential and electroviscous effect in heterogeneous microchannels. Microfluid. Nanofluid. 2008, 4:457. 10.1007/s10404-007-0205-0
-
(2008)
Microfluid. Nanofluid.
, vol.4
, pp. 457
-
-
Xuan, X.1
-
64
-
-
77951612417
-
Nanofluidics, from bulk to interfaces
-
10.1039/b909366b
-
Bocquet L. Charlaix E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 2010, 39:1073. 10.1039/b909366b
-
(2010)
Chem. Soc. Rev.
, vol.39
, pp. 1073
-
-
Bocquet, L.1
Charlaix, E.2
-
65
-
-
24344451308
-
Ion transport through nanoslits dominated by the effective surface charge
-
10.1063/1.1954899
-
Schoch R.B. Renaud P. Ion transport through nanoslits dominated by the effective surface charge. Appl. Phys. Lett. 2005, 86:253111. 10.1063/1.1954899
-
(2005)
Appl. Phys. Lett.
, vol.86
, pp. 253111
-
-
Schoch, R.B.1
Renaud, P.2
-
66
-
-
33645744236
-
Effect of the surface charge on ion transport through nanoslits
-
10.1063/1.1896936
-
Schoch R.B. Lintel H. Renaud P. Effect of the surface charge on ion transport through nanoslits. Phys. Fluids 2005, 17:100604. 10.1063/1.1896936
-
(2005)
Phys. Fluids
, vol.17
, pp. 100604
-
-
Schoch, R.B.1
Lintel, H.2
Renaud, P.3
-
68
-
-
0000295028
-
Electrostatic interaction of colloidal surfaces with variable charge
-
10.1021/jp984099w
-
Behrens S.H. Borkovec M. Electrostatic interaction of colloidal surfaces with variable charge. J. Phys. Chem. B 1999, 103:2918. 10.1021/jp984099w
-
(1999)
J. Phys. Chem. B
, vol.103
, pp. 2918
-
-
Behrens, S.H.1
Borkovec, M.2
-
69
-
-
54949130153
-
Electric energy generation in single track-etched nanopores
-
10.1063/1.3001590
-
Xie Y. Wang X. Xue J. Jin K. Chen L. Wang Y. Electric energy generation in single track-etched nanopores. Appl. Phys. Lett. 2008, 93:163116. 10.1063/1.3001590, ,.
-
(2008)
Appl. Phys. Lett.
, vol.93
, pp. 163116
-
-
Xie, Y.1
Wang, X.2
Xue, J.3
Jin, K.4
Chen, L.5
Wang, Y.6
-
70
-
-
67650293614
-
Surface charge density of the track-etched nanopores in polyethylene terephthalate foils
-
10.1063/1.3130988
-
Xue J. Xie Y. Yan Y. Jin K. Wang Y. Surface charge density of the track-etched nanopores in polyethylene terephthalate foils. Biomicrofluidics 2009, 3:022408. 10.1063/1.3130988
-
(2009)
Biomicrofluidics
, vol.3
, pp. 022408
-
-
Xue, J.1
Xie, Y.2
Yan, Y.3
Jin, K.4
Wang, Y.5
-
71
-
-
74449092011
-
Electrochemical charge of silica surfaces at high ionic strength in narrow channels
-
10.1016/j.jcis.2009.11.039
-
Wang M. Revil A. Electrochemical charge of silica surfaces at high ionic strength in narrow channels. J. Colloid Interface Sci. 2010, 343:381. 10.1016/j.jcis.2009.11.039
-
(2010)
J. Colloid Interface Sci.
, vol.343
, pp. 381
-
-
Wang, M.1
Revil, A.2
-
72
-
-
77958483935
-
Surface-dependent chemical equilibrium constants and capacitances for bare and 3-cyanopropyldimethylchlorosilane coated silica nanochannels
-
10.1016/j.jcis.2010.09.025
-
Andersen M.B. Frey J. Pennathur S. Bruus H. Surface-dependent chemical equilibrium constants and capacitances for bare and 3-cyanopropyldimethylchlorosilane coated silica nanochannels. J. Colloid Interface Sci. 2011, 353:301. 10.1016/j.jcis.2010.09.025
-
(2011)
J. Colloid Interface Sci.
, vol.353
, pp. 301
-
-
Andersen, M.B.1
Frey, J.2
Pennathur, S.3
Bruus, H.4
-
73
-
-
0028895922
-
The measurement of ionic conductivities and mobilities of certain less common organic anions needed for junction potential corrections in electrophysiology
-
+(tris buffer ion) are, respectively, 2.05 × 10-7 (Ref. 60), 4.621 × 10-8 (Ref. 60), and 3.05 × 10-8 m2/Vs [ ].
-
+(tris buffer ion) are, respectively, 2.05 × 10-7 (Ref. 60), 4.621 × 10-8 (Ref. 60), and 3.05 × 10-8 m2/Vs
-
(1995)
J. Neurosci. Methods
, vol.56
, pp. 37
-
-
Ng, B.1
Barry, P.H.2
-
74
-
-
0035962977
-
Surface conduction
-
10.1088/0953-8984/13/21/326
-
Lyklema J. Surface conduction. J Phys. Condens. Matter 2001, 13:5027. 10.1088/0953-8984/13/21/326
-
(2001)
J Phys. Condens. Matter
, vol.13
, pp. 5027
-
-
Lyklema, J.1
|