메뉴 건너뛰기




Volumn , Issue , 2012, Pages

Event-based classification of social media streams

Author keywords

Classification; Clustering; Event identification; SVMs

Indexed keywords

CLUSTERING; DATA ITEMS; DATA POINTS; DATA SIZE; EVENT DETECTION; EVENT IDENTIFICATION; EVENT-BASED; MACHINE LEARNING TECHNIQUES; SOCIAL MEDIA; STATE-OF-THE-ART APPROACH; SVMS; USER INTERVENTION;

EID: 84864140773     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2324796.2324824     Document Type: Conference Paper
Times cited : (84)

References (37)
  • 1
    • 0034832620 scopus 로고    scopus 로고
    • Outlier detection for high dimensional data
    • C. Aggarwal and P. Yu. Outlier detection for high dimensional data. ACM Sigmod Record, 30(2):37-46, 2001.
    • (2001) ACM Sigmod Record , vol.30 , Issue.2 , pp. 37-46
    • Aggarwal, C.1    Yu, P.2
  • 3
    • 0038494682 scopus 로고    scopus 로고
    • Coolcat: An entropy-based algorithm for categorical clustering
    • D. Barbará, Y. Li, and J. Couto. Coolcat: an entropy-based algorithm for categorical clustering. In Proceedings of CIKM, pages 582-589, 2002.
    • (2002) Proceedings of CIKM , pp. 582-589
    • Barbará, D.1    Li, Y.2    Couto, J.3
  • 4
    • 77950913131 scopus 로고    scopus 로고
    • Learning similarity metrics for event identification in social media
    • H. Becker, M. Naaman, and L. Gravano. Learning similarity metrics for event identification in social media. In Proceedings of WSDM, pages 291-300, 2010.
    • (2010) Proceedings of WSDM , pp. 291-300
    • Becker, H.1    Naaman, M.2    Gravano, L.3
  • 5
    • 0035109647 scopus 로고    scopus 로고
    • Variations on probabilistic suffix trees: Statistical modeling and prediction of protein families
    • G. Bejerano and G. Yona. Variations on probabilistic suffix trees: statistical modeling and prediction of protein families. Bioinformatics, 17(1):23-43, 2001. (Pubitemid 32178011)
    • (2001) Bioinformatics , vol.17 , Issue.1 , pp. 23-43
    • Bejerano, G.1    Yona, G.2
  • 9
    • 74549115891 scopus 로고    scopus 로고
    • Event detection from ickr data through wavelet-based spatial analysis
    • L. Chen and A. Roy. Event detection from ickr data through wavelet-based spatial analysis. In In Proceedings CIKM, 2009.
    • (2009) Proceedings CIKM
    • Chen, L.1    Roy, A.2
  • 11
    • 0034592938 scopus 로고    scopus 로고
    • Mining high-speed data streams
    • ACM
    • P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings of KDD, pages 71-80. ACM, 2000.
    • (2000) Proceedings of KDD , pp. 71-80
    • Domingos, P.1    Hulten, G.2
  • 12
    • 0009900351 scopus 로고    scopus 로고
    • Anomaly detection over noisy data using learned probability distributions
    • E. Eskin. Anomaly detection over noisy data using learned probability distributions. In Proceedings of ICML, 2000.
    • (2000) Proceedings of ICML
    • Eskin, E.1
  • 15
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of KDD, pages 226-231, 1996.
    • (1996) Proceedings of KDD , pp. 226-231
    • Ester, M.1    Kriegel, H.2    Sander, J.3    Xu, X.4
  • 16
    • 0002656796 scopus 로고    scopus 로고
    • Activity monitoring: Noticing interesting changes in behavior
    • ACM
    • T. Fawcett and F. Provost. Activity monitoring: Noticing interesting changes in behavior. In Proceedings of KDD, pages 53-62. ACM, 1999.
    • (1999) Proceedings of KDD , pp. 53-62
    • Fawcett, T.1    Provost, F.2
  • 17
    • 77957885321 scopus 로고    scopus 로고
    • A general framework for mining concept-drifting data streams with skewed distributions
    • J. Gao, W. Fan, J. Han, and P. Yu. A general framework for mining concept-drifting data streams with skewed distributions. Proc. of SDM'07, 2007.
    • (2007) Proc. of SDM'07
    • Gao, J.1    Fan, W.2    Han, J.3    Yu, P.4
  • 18
    • 0034228041 scopus 로고    scopus 로고
    • Rock: A robust clustering algorithm for categorical attributes
    • S. Guha, R. Rastogi, and K. Shim. Rock: A robust clustering algorithm for categorical attributes. Information systems, 25(5):345-366, 2000.
    • (2000) Information Systems , vol.25 , Issue.5 , pp. 345-366
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 19
    • 37449029679 scopus 로고    scopus 로고
    • Online classification of nonstationary data streams
    • M. Last. Online classification of nonstationary data streams. Intelligent Data Analysis, 6(2):129-147, 2002.
    • (2002) Intelligent Data Analysis , vol.6 , Issue.2 , pp. 129-147
    • Last, M.1
  • 21
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review-part 1: Statistical approaches
    • M. Markou and S. Singh. Novelty detection: a review-part 1: statistical approaches. Signal Processing, 83(12):2481-2497, 2003.
    • (2003) Signal Processing , vol.83 , Issue.12 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 22
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A review|part 2:: Neural network based approaches
    • M. Markou and S. Singh. Novelty detection: a review|part 2:: neural network based approaches. Signal Processing, 83(12):2499-2521, 2003.
    • (2003) Signal Processing , vol.83 , Issue.12 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 23
    • 84857318854 scopus 로고    scopus 로고
    • Event-based media organization and indexing
    • R. Mattivi, G. Boato, and B. G. D. Natale. Event-based media organization and indexing. Infocummunications, (3):99-18, 2011.
    • (2011) Infocummunications , Issue.3 , pp. 99-18
    • Mattivi, R.1    Boato, G.2    Natale, B.G.D.3
  • 24
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • J. Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in large margin classifiers, 10(3):61-74, 1999.
    • (1999) Advances in Large Margin Classifiers , vol.10 , Issue.3 , pp. 61-74
    • Platt, J.1
  • 33
    • 0037781033 scopus 로고    scopus 로고
    • Novelty detection in a Kohonen-like network with a long-term depression learning rule
    • D. Theofilou, V. Steuber, and E. Schutter. Novelty detection in a kohonen-like network with a long-term depression learning rule. Neurocomputing, 52:411-417, 2003. (Pubitemid 36700538)
    • (2003) Neurocomputing , vol.52-54 , pp. 411-417
    • Theofilou, D.1    Steuber, V.2    De Schutter, E.3
  • 35
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers
    • ACM
    • H. Wang, W. Fan, P. Yu, and J. Han. Mining concept-drifting data streams using ensemble classifiers. In Proceedings of KDD, pages 226-235. ACM, 2003.
    • (2003) Proceedings of KDD , pp. 226-235
    • Wang, H.1    Fan, W.2    Yu, P.3    Han, J.4
  • 36
    • 0035271352 scopus 로고    scopus 로고
    • An anomaly detection technique based on a chi-square statistic for detecting intrusions into information systems
    • DOI 10.1002/qre.392
    • N. Ye and Q. Chen. An anomaly detection technique based on a chi-square statistic for detecting intrusions into information systems. Quality and Reliability Engineering International, 17(2):105-112, 2001. (Pubitemid 32443869)
    • (2001) Quality and Reliability Engineering International , vol.17 , Issue.2 , pp. 105-112
    • Ye, N.1    Chen, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.