메뉴 건너뛰기




Volumn 32, Issue 13, 2012, Pages 2372-2383

Separate Domains of Fission Yeast Cdk9 (P-tefb) Are Required for Capping Enzyme Recruitment and Primed (Ser7-Phosphorylated) Rpb1 Carboxyl-Terminal Domain Substrate Recognition

Author keywords

[No Author keywords available]

Indexed keywords

5' CAP METHYLTRANSFERASE PCM1; CYCLIN DEPENDENT KINASE 7; CYCLIN DEPENDENT KINASE 9; METHYLTRANSFERASE; RNA POLYMERASE II; RNA POLYMERASE II RBP1 SUBUNIT; SERINE; TRANSCRIPTION FACTOR; UNCLASSIFIED DRUG;

EID: 84864015492     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.06657-11     Document Type: Article
Times cited : (31)

References (62)
  • 1
    • 65549156025 scopus 로고    scopus 로고
    • TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II
    • Akhtar MS, et al. 2009. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol. Cell 34:387-393.
    • (2009) Mol. Cell , vol.34 , pp. 387-393
    • Akhtar, M.S.1
  • 2
    • 0031818471 scopus 로고    scopus 로고
    • Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe
    • Bahler J, et al. 1998. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14:943-951.
    • (1998) Yeast , vol.14 , pp. 943-951
    • Bahler, J.1
  • 3
    • 77958587420 scopus 로고    scopus 로고
    • CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1
    • Bartkowiak B, et al. 2010. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev. 24:2303-2316.
    • (2010) Genes Dev , vol.24 , pp. 2303-2316
    • Bartkowiak, B.1
  • 4
    • 80054756087 scopus 로고    scopus 로고
    • The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes
    • Blazek D, et al. 2011. The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev. 25:2158-2172.
    • (2011) Genes Dev , vol.25 , pp. 2158-2172
    • Blazek, D.1
  • 5
    • 70449641057 scopus 로고    scopus 로고
    • Progression through the RNA polymerase II CTD cycle
    • Buratowski S. 2009. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36:541-546.
    • (2009) Mol. Cell , vol.36 , pp. 541-546
    • Buratowski, S.1
  • 6
    • 37249015899 scopus 로고    scopus 로고
    • Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7
    • Chapman RD, et al. 2007. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318:1780-1782.
    • (2007) Science , vol.318 , pp. 1780-1782
    • Chapman, R.D.1
  • 7
    • 0035893314 scopus 로고    scopus 로고
    • Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain
    • Cho EJ, Kobor MS, Kim M, Greenblatt J, Buratowski S. 2001. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 15:3319-3329.
    • (2001) Genes Dev , vol.15 , pp. 3319-3329
    • Cho, E.J.1    Kobor, M.S.2    Kim, M.3    Greenblatt, J.4    Buratowski, S.5
  • 8
    • 84875006338 scopus 로고    scopus 로고
    • Serine-7 but not serine-5 phosphorylation primesRNApolymerase IICTDfor P-TEFb recognition
    • in press
    • Czudnochowski N, Bösken CA, Geyer M. Serine-7 but not serine-5 phosphorylation primesRNApolymerase IICTDfor P-TEFb recognition. Nat. Commun., in press.
    • Nat. Commun.
    • Czudnochowski, N.1    Bösken, C.A.2    Geyer, M.3
  • 9
    • 0037178849 scopus 로고    scopus 로고
    • Screening the yeast "disruptome" for mutants affecting resistance to the immunosuppressive drug, mycophenolic acid
    • Desmoucelles C, Pinson B, Saint-Marc C, Daignan-Fornier B. 2002. Screening the yeast "disruptome" for mutants affecting resistance to the immunosuppressive drug, mycophenolic acid. J. Biol. Chem. 277:27036-27044.
    • (2002) J. Biol. Chem. , vol.277 , pp. 27036-27044
    • Desmoucelles, C.1    Pinson, B.2    Saint-Marc, C.3    Daignan-Fornier, B.4
  • 10
    • 37249063572 scopus 로고    scopus 로고
    • Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression
    • Egloff S, et al. 2007. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science 318:1777-1779.
    • (2007) Science , vol.318 , pp. 1777-1779
    • Egloff, S.1
  • 11
    • 0035824515 scopus 로고    scopus 로고
    • Proteome analysis and morphological studies reveal multiple effects of the immunosuppressive drug mycophenolic acid specifically resulting from guanylic nucleotide depletion
    • Escobar-Henriques M, Balguerie A, Monribot C, Boucherie H, Daignan-Fornier B. 2001. Proteome analysis and morphological studies reveal multiple effects of the immunosuppressive drug mycophenolic acid specifically resulting from guanylic nucleotide depletion. J. Biol. Chem. 276: 46237-46242.
    • (2001) J. Biol. Chem. , vol.276 , pp. 46237-46242
    • Escobar-Henriques, M.1    Balguerie, A.2    Monribot, C.3    Boucherie, H.4    Daignan-Fornier, B.5
  • 12
    • 0026633013 scopus 로고
    • 6-Azauracil inhibition of GTP biosynthesis in Saccharomyces cerevisiae
    • Exinger F, Lacroute F. 1992. 6-Azauracil inhibition of GTP biosynthesis in Saccharomyces cerevisiae. Curr. Genet. 22:9-11.
    • (1992) Curr. Genet. , vol.22 , pp. 9-11
    • Exinger, F.1    Lacroute, F.2
  • 13
    • 0028590113 scopus 로고
    • Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/ TFIIK
    • Feaver WJ, Svejstrup JQ, Henry NL, Kornberg RD. 1994. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/ TFIIK. Cell 79:1103-1109.
    • (1994) Cell , vol.79 , pp. 1103-1109
    • Feaver, W.J.1    Svejstrup, J.Q.2    Henry, N.L.3    Kornberg, R.D.4
  • 14
    • 70249104647 scopus 로고    scopus 로고
    • Defining mechanisms that regulate RNA polymerase II transcription in vivo
    • Fuda NJ, Ardehali MB, Lis JT. 2009. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461:186-192.
    • (2009) Nature , vol.461 , pp. 186-192
    • Fuda, N.J.1    Ardehali, M.B.2    Lis, J.T.3
  • 15
    • 70350442978 scopus 로고    scopus 로고
    • TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II
    • Glover-Cutter K, et al. 2009. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol. Cell. Biol. 29:5455-5464.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 5455-5464
    • Glover-Cutter, K.1
  • 16
    • 79960440046 scopus 로고    scopus 로고
    • The initiation factor tfe and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation
    • Grohmann D, et al. 2011. The initiation factor tfe and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation. Mol. Cell 43:263-274.
    • (2011) Mol. Cell , vol.43 , pp. 263-274
    • Grohmann, D.1
  • 17
    • 33947609523 scopus 로고    scopus 로고
    • Recruitment of P-TEFb (Cdk9-Pch1) to chromatin by the cap-methyl transferase Pcm1 in fission yeast
    • Guiguen A, et al. 2007. Recruitment of P-TEFb (Cdk9-Pch1) to chromatin by the cap-methyl transferase Pcm1 in fission yeast. EMBO J. 26:1552-1559.
    • (2007) EMBO J , vol.26 , pp. 1552-1559
    • Guiguen, A.1
  • 18
    • 0032110627 scopus 로고    scopus 로고
    • Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases
    • Hengartner CJ, et al. 1998. Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol. Cell 2:43-53.
    • (1998) Mol. Cell , vol.2 , pp. 43-53
    • Hengartner, C.J.1
  • 19
    • 80555125095 scopus 로고    scopus 로고
    • RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3= end processing
    • Hsin JP, Sheth A, Manley JL. 2011. RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3= end processing. Science 334: 683-686.
    • (2011) Science , vol.334 , pp. 683-686
    • Hsin, J.P.1    Sheth, A.2    Manley, J.L.3
  • 20
    • 23744514308 scopus 로고    scopus 로고
    • The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase IIdependent transcription
    • Jang MK, et al. 2005. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase IIdependent transcription. Mol. Cell 19:523-534.
    • (2005) Mol. Cell , vol.19 , pp. 523-534
    • Jang, M.K.1
  • 21
    • 34347241749 scopus 로고    scopus 로고
    • Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis
    • Kanin EI, et al. 2007. Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis. Proc. Natl. Acad. Sci. U. S. A. 104:5812-5817.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 5812-5817
    • Kanin, E.I.1
  • 22
    • 44849140275 scopus 로고    scopus 로고
    • A cyclin-dependent kinase that promotes cytokinesis through modulating phosphorylation of the carboxy terminal domain of the RNA Pol II Rpb1p sub-unit
    • doi:10.1371/journal.pone.0000433
    • Karagiannis J, Balasubramanian MK. 2007. A cyclin-dependent kinase that promotes cytokinesis through modulating phosphorylation of the carboxy terminal domain of the RNA Pol II Rpb1p sub-unit. PLoS One 2:e433. doi:10.1371/journal.pone.0000433.
    • (2007) PLoS One , vol.2
    • Karagiannis, J.1    Balasubramanian, M.K.2
  • 23
    • 0141557763 scopus 로고    scopus 로고
    • Bur1 kinase is required for efficient transcription elongation by RNA polymerase II
    • Keogh MC, Podolny V, Buratowski S. 2003. Bur1 kinase is required for efficient transcription elongation by RNA polymerase II. Mol. Cell. Biol. 23:7005-7018.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 7005-7018
    • Keogh, M.C.1    Podolny, V.2    Buratowski, S.3
  • 24
    • 77957786100 scopus 로고    scopus 로고
    • Gene-specific RNA polymerase II phosphorylation and the CTD code
    • Kim H, et al. 2010. Gene-specific RNA polymerase II phosphorylation and the CTD code. Nat. Struct. Mol. Biol. 17:1279-1286.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 1279-1286
    • Kim, H.1
  • 25
    • 70350389837 scopus 로고    scopus 로고
    • Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2 5 and 7
    • Kim M, Suh H, Cho EJ, Buratowski S. 2009. Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7. J. Biol. Chem. 284:26421-26426.
    • (2009) J. Biol. Chem. , vol.284 , pp. 26421-26426
    • Kim, M.1    Suh, H.2    Cho, E.J.3    Buratowski, S.4
  • 26
    • 79952256560 scopus 로고    scopus 로고
    • RNA polymerase and transcription elongation factor Spt4/5 complex structure
    • Klein BJ, et al. 2011. RNA polymerase and transcription elongation factor Spt4/5 complex structure. Proc. Natl. Acad. Sci. U. S. A. 108:546-550.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 546-550
    • Klein, B.J.1
  • 27
    • 0034307008 scopus 로고    scopus 로고
    • Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription
    • Komarnitsky P, Cho EJ, Buratowski S. 2000. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14:2452-2460.
    • (2000) Genes Dev , vol.14 , pp. 2452-2460
    • Komarnitsky, P.1    Cho, E.J.2    Buratowski, S.3
  • 28
    • 30044438459 scopus 로고    scopus 로고
    • Dichotomous but stringent substrate selection by the dual-function Cdk7 complex revealed by chemical genetics
    • Larochelle S, et al. 2006. Dichotomous but stringent substrate selection by the dual-function Cdk7 complex revealed by chemical genetics. Nat. Struct. Mol. Biol. 13:55-62.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 55-62
    • Larochelle, S.1
  • 29
    • 33947424005 scopus 로고    scopus 로고
    • Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells
    • Larochelle S, et al. 2007. Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Mol. Cell 25:839-850.
    • (2007) Mol. Cell , vol.25 , pp. 839-850
    • Larochelle, S.1
  • 30
    • 0842347413 scopus 로고    scopus 로고
    • Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex
    • Liu Y, et al. 2004. Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex. Mol. Cell. Biol. 24:1721-1735.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 1721-1735
    • Liu, Y.1
  • 31
    • 68849086180 scopus 로고    scopus 로고
    • Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex
    • Liu Y, et al. 2009. Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex. Mol. Cell. Biol. 29:4852-4863.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 4852-4863
    • Liu, Y.1
  • 32
    • 79953779997 scopus 로고    scopus 로고
    • Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity
    • Martinez-Rucobo FW, Sainsbury S, Cheung AC, Cramer P. 2011. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. EMBO J. 30:1302-1310.
    • (2011) EMBO J , vol.30 , pp. 1302-1310
    • Martinez-Rucobo, F.W.1    Sainsbury, S.2    Cheung, A.C.3    Cramer, P.4
  • 33
    • 77957766550 scopus 로고    scopus 로고
    • Uniform transitions of the general RNA polymerase II transcription complex
    • Mayer A, et al. 2010. Uniform transitions of the general RNA polymerase II transcription complex. Nat. Struct. Mol. Biol. 17:1272-1278.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 1272-1278
    • Mayer, A.1
  • 34
    • 0026025891 scopus 로고
    • Molecular genetic analysis of fission yeast Schizosaccharomyces pombe
    • Moreno S, Klar A, Nurse P. 1991. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194:795-823.
    • (1991) Methods Enzymol , vol.194 , pp. 795-823
    • Moreno, S.1    Klar, A.2    Nurse, P.3
  • 35
    • 76749134299 scopus 로고    scopus 로고
    • IMP dehydrogenase is recruited to the transcription complex through serine 2 phosphorylation of RNA polymerase II
    • Park JH, Ahn SH. 2010. IMP dehydrogenase is recruited to the transcription complex through serine 2 phosphorylation of RNA polymerase II. Biochem. Biophys. Res. Commun. 392:588-592.
    • (2010) Biochem. Biophys. Res. Commun. , vol.392 , pp. 588-592
    • Park, J.H.1    Ahn, S.H.2
  • 36
    • 31344455380 scopus 로고    scopus 로고
    • Cyclin-dependent kinase 9 (Cdk9) of fission yeast is activated by the CDK-activating kinase Csk1, overlaps functionally with the TFIIH-associated kinase Mcs6, and associates with the mRNA cap methyltransferase Pcm1 in vivo
    • Pei Y, et al. 2006. Cyclin-dependent kinase 9 (Cdk9) of fission yeast is activated by the CDK-activating kinase Csk1, overlaps functionally with the TFIIH-associated kinase Mcs6, and associates with the mRNA cap methyltransferase Pcm1 in vivo. Mol. Cell. Biol. 26:777-788.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 777-788
    • Pei, Y.1
  • 37
    • 0035958863 scopus 로고    scopus 로고
    • The length, phosphorylation state, and primary structure of the RNA polymerase II carboxyl-terminal domain dictate interactions with mRNA capping enzymes
    • Pei Y, Hausmann S, Ho CK, Schwer B, Shuman S. 2001. The length, phosphorylation state, and primary structure of the RNA polymerase II carboxyl-terminal domain dictate interactions with mRNA capping enzymes. J. Biol. Chem. 276:28075-28082.
    • (2001) J. Biol. Chem. , vol.276 , pp. 28075-28082
    • Pei, Y.1    Hausmann, S.2    Ho, C.K.3    Schwer, B.4    Shuman, S.5
  • 38
    • 0037470160 scopus 로고    scopus 로고
    • Interactions between fission yeast Cdk9, its cyclin partner Pch1, and mRNA capping enzyme Pct1 suggest an elongation checkpoint for mRNA quality control
    • Pei Y, Schwer B, Shuman S. 2003. Interactions between fission yeast Cdk9, its cyclin partner Pch1, and mRNA capping enzyme Pct1 suggest an elongation checkpoint for mRNA quality control. J. Biol. Chem. 278: 7180-7188.
    • (2003) J. Biol. Chem. , vol.278 , pp. 7180-7188
    • Pei, Y.1    Schwer, B.2    Shuman, S.3
  • 39
    • 0242321980 scopus 로고    scopus 로고
    • Characterization of the Schizosaccharomyces pombe Cdk9/Pch1 protein kinase: Spt5 phosphorylation, autophosphorylation, and mutational analysis
    • Pei Y, Shuman S. 2003. Characterization of the Schizosaccharomyces pombe Cdk9/Pch1 protein kinase: Spt5 phosphorylation, autophosphorylation, and mutational analysis. J. Biol. Chem. 278:43346-43356.
    • (2003) J. Biol. Chem. , vol.278 , pp. 43346-43356
    • Pei, Y.1    Shuman, S.2
  • 40
    • 0037205456 scopus 로고    scopus 로고
    • Interactions between fission yeast mRNA capping enzymes and elongation factor Spt5
    • Pei Y, Shuman S. 2002. Interactions between fission yeast mRNA capping enzymes and elongation factor Spt5. J. Biol. Chem. 277:19639-19648.
    • (2002) J. Biol. Chem. , vol.277 , pp. 19639-19648
    • Pei, Y.1    Shuman, S.2
  • 41
    • 70350005395 scopus 로고    scopus 로고
    • "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions
    • Perales R, Bentley D. 2009. "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions. Mol. Cell 36:178-191.
    • (2009) Mol. Cell , vol.36 , pp. 178-191
    • Perales, R.1    Bentley, D.2
  • 42
    • 33746403681 scopus 로고    scopus 로고
    • Controlling the elongation phase of transcription with P-TEFb
    • Peterlin BM, Price DH. 2006. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 23:297-305.
    • (2006) Mol. Cell , vol.23 , pp. 297-305
    • Peterlin, B.M.1    Price, D.H.2
  • 43
    • 33751090746 scopus 로고    scopus 로고
    • Phosphorylation and functions of the RNA polymerase II CTD
    • Phatnani HP, Greenleaf AL. 2006. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20:2922-2936.
    • (2006) Genes Dev , vol.20 , pp. 2922-2936
    • Phatnani, H.P.1    Greenleaf, A.L.2
  • 44
    • 62549104640 scopus 로고    scopus 로고
    • Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters
    • Qiu H, Hu C, Hinnebusch AG. 2009. Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol. Cell 33:752-762.
    • (2009) Mol. Cell , vol.33 , pp. 752-762
    • Qiu, H.1    Hu, C.2    Hinnebusch, A.G.3
  • 45
    • 0033611561 scopus 로고    scopus 로고
    • Cyclin C/CDK8 and cyclin H/CDK7/ p36 are biochemically distinct CTD kinases
    • Rickert P, Corden JL, Lees E. 1999. Cyclin C/CDK8 and cyclin H/CDK7/ p36 are biochemically distinct CTD kinases. Oncogene 18:1093-1102.
    • (1999) Oncogene , vol.18 , pp. 1093-1102
    • Rickert, P.1    Corden, J.L.2    Lees, E.3
  • 46
    • 0028600051 scopus 로고    scopus 로고
    • The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor
    • Roy R, et al. 1994. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79:1093-1101.
    • Cell , vol.79 , pp. 1093-1101
    • Roy, R.1
  • 47
    • 0037046803 scopus 로고
    • 2002. A CDK-activating kinase network is required in cell cycle control and transcription in fission yeast
    • 45a.Saiz JE, Fisher RP. 2002. A CDK-activating kinase network is required in cell cycle control and transcription in fission yeast. Curr. Biol. 12:1100-1105.
    • (1994) Curr. Biol. , vol.12 , pp. 1100-1105
    • Saiz, J.E.1    Fisher, R.P.2
  • 48
    • 80054833194 scopus 로고    scopus 로고
    • Gcn5 facilitates Pol II progression, rather than recruitment to nucleosome-depleted stress promoters, in Schizosaccharomyces pombe
    • Sanso M, et al. 2011. Gcn5 facilitates Pol II progression, rather than recruitment to nucleosome-depleted stress promoters, in Schizosaccharomyces pombe. Nucleic Acids Res. 39:6369-6379.
    • (2011) Nucleic Acids Res , vol.39 , pp. 6369-6379
    • Sanso, M.1
  • 49
    • 77951993585 scopus 로고    scopus 로고
    • Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD
    • Schneider S, Pei Y, Shuman S, Schwer B. 2010. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD. Mol. Cell. Biol. 30:2353-2364.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 2353-2364
    • Schneider, S.1    Pei, Y.2    Shuman, S.3    Schwer, B.4
  • 50
    • 0034307172 scopus 로고    scopus 로고
    • Dynamic association of capping enzymes with transcribing RNA polymerase II
    • Schroeder SC, Schwer B, Shuman S, Bentley D. 2000. Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev. 14:2435-2440.
    • (2000) Genes Dev , vol.14 , pp. 2435-2440
    • Schroeder, S.C.1    Schwer, B.2    Shuman, S.3    Bentley, D.4
  • 51
    • 79960455840 scopus 로고    scopus 로고
    • Deciphering the RNA polymerase II CTD code in fission yeast
    • Schwer B, Shuman S. 2011. Deciphering the RNA polymerase II CTD code in fission yeast. Mol. Cell 43:311-318.
    • (2011) Mol. Cell , vol.43 , pp. 311-318
    • Schwer, B.1    Shuman, S.2
  • 52
    • 0035980130 scopus 로고    scopus 로고
    • Regulation of an IMP dehydrogenase gene and its overexpression in drug-sensitive transcription elongation mutants of yeast
    • Shaw RJ, Wilson JL, Smith KT, Reines D. 2001. Regulation of an IMP dehydrogenase gene and its overexpression in drug-sensitive transcription elongation mutants of yeast. J. Biol. Chem. 276:32905-32916.
    • (2001) J. Biol. Chem. , vol.276 , pp. 32905-32916
    • Shaw, R.J.1    Wilson, J.L.2    Smith, K.T.3    Reines, D.4
  • 53
    • 0035201941 scopus 로고    scopus 로고
    • Structure, mechanism, and evolution of the mRNA capping apparatus
    • Shuman S. 2001. Structure, mechanism, and evolution of the mRNA capping apparatus. Prog. Nucleic Acid Res. Mol. Biol. 66:1-40.
    • (2001) Prog. Nucleic Acid Res. Mol. Biol. , vol.66 , pp. 1-40
    • Shuman, S.1
  • 54
    • 0036133174 scopus 로고    scopus 로고
    • Interaction between P-TEFb and the C-terminal domain of RNA polymerase II activates transcriptional elongation from sites upstream or downstream of target genes
    • Taube R, Lin X, Irwin D, Fujinaga K, Peterlin BM. 2002. Interaction between P-TEFb and the C-terminal domain of RNA polymerase II activates transcriptional elongation from sites upstream or downstream of target genes. Mol. Cell. Biol. 22:321-331.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 321-331
    • Taube, R.1    Lin, X.2    Irwin, D.3    Fujinaga, K.4    Peterlin, B.M.5
  • 55
    • 77956344274 scopus 로고    scopus 로고
    • Chemical-genomic dissection of the CTD code
    • Tietjen JR, et al. 2010. Chemical-genomic dissection of the CTD code. Nat. Struct. Mol. Biol. 17:1154-1161.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 1154-1161
    • Tietjen, J.R.1
  • 56
    • 0032549653 scopus 로고    scopus 로고
    • Characterization of the residues phosphorylated in vitro by different C-terminal domain kinases
    • Trigon S, et al. 1998. Characterization of the residues phosphorylated in vitro by different C-terminal domain kinases. J. Biol. Chem. 273:6769-6775.
    • (1998) J. Biol. Chem. , vol.273 , pp. 6769-6775
    • Trigon, S.1
  • 57
    • 62549123663 scopus 로고    scopus 로고
    • TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast
    • Viladevall L, et al. 2009. TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast. Mol. Cell 33:738-751.
    • (2009) Mol. Cell , vol.33 , pp. 738-751
    • Viladevall, L.1
  • 58
    • 0032534814 scopus 로고    scopus 로고
    • Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro
    • Wada T, Takagi T, Yamaguchi Y, Watanabe D, Handa H. 1998. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. EMBO J. 17:7395-7403.
    • (1998) EMBO J , vol.17 , pp. 7395-7403
    • Wada, T.1    Takagi, T.2    Yamaguchi, Y.3    Watanabe, D.4    Handa, H.5
  • 59
    • 0033566042 scopus 로고    scopus 로고
    • Transcription elongation factor hSPT5 stimulates mRNA capping
    • Wen Y, Shatkin AJ. 1999. Transcription elongation factor hSPT5 stimulates mRNA capping. Genes Dev. 13:1774-1779.
    • (1999) Genes Dev , vol.13 , pp. 1774-1779
    • Wen, Y.1    Shatkin, A.J.2
  • 60
    • 30744449491 scopus 로고    scopus 로고
    • P-TEFb-mediated phosphorylation of hSpt5 Cterminal repeats is critical for processive transcription elongation
    • Yamada T, et al. 2006. P-TEFb-mediated phosphorylation of hSpt5 Cterminal repeats is critical for processive transcription elongation. Mol. Cell 21:227-237.
    • (2006) Mol. Cell , vol.21 , pp. 227-237
    • Yamada, T.1
  • 61
    • 0033515521 scopus 로고    scopus 로고
    • NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation
    • Yamaguchi Y, et al. 1999. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97: 41-51.
    • (1999) Cell , vol.97 , pp. 41-51
    • Yamaguchi, Y.1
  • 62
    • 23744467035 scopus 로고    scopus 로고
    • Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4
    • Yang Z, et al. 2005. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19:535-545.
    • (2005) Mol. Cell , vol.19 , pp. 535-545
    • Yang, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.