메뉴 건너뛰기




Volumn 88, Issue 1, 2007, Pages 75-84

Ultrasonographic feature selection and pattern classification for cervical lymph nodes using support vector machines

Author keywords

Cervical lymph nodes; Computer aided diagnosis (CAD); Feature selection; Support vector machine (SVM); Ultrasonographic features

Indexed keywords

COMPUTER AIDED DIAGNOSIS; NEURAL NETWORKS; RADIOLOGY; SUPPORT VECTOR MACHINES; ULTRASONOGRAPHY;

EID: 34548282645     PISSN: 01692607     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cmpb.2007.07.008     Document Type: Article
Times cited : (15)

References (28)
  • 1
    • 0036260506 scopus 로고    scopus 로고
    • An overview of neck node sonography
    • Ahuja A.F., and Ying M.M. An overview of neck node sonography. Invest. Radiol. 37 (2002) 333-342
    • (2002) Invest. Radiol. , vol.37 , pp. 333-342
    • Ahuja, A.F.1    Ying, M.M.2
  • 2
    • 0032101793 scopus 로고    scopus 로고
    • Ultrasonographic evaluation of small cervical lymph nodes in head and neck cancer
    • Yashida H., Yusa H., Ueno E., Tohno E., and Tsunoda-Shimizu H. Ultrasonographic evaluation of small cervical lymph nodes in head and neck cancer. Ultrasound Med. Biol. 24 (1998) 621-629
    • (1998) Ultrasound Med. Biol. , vol.24 , pp. 621-629
    • Yashida, H.1    Yusa, H.2    Ueno, E.3    Tohno, E.4    Tsunoda-Shimizu, H.5
  • 3
    • 23744495129 scopus 로고    scopus 로고
    • Differentiation between benign and metastatic cervical lymph nodes with ultrasound
    • Toriyabe Y., Nishimura T., Kita S., Saito Y., and Miyokawa N. Differentiation between benign and metastatic cervical lymph nodes with ultrasound. Clin. Radiol. 52 (1997) 927-932
    • (1997) Clin. Radiol. , vol.52 , pp. 927-932
    • Toriyabe, Y.1    Nishimura, T.2    Kita, S.3    Saito, Y.4    Miyokawa, N.5
  • 5
    • 0034002289 scopus 로고    scopus 로고
    • A probability prediction rule for malignant cervical lymphadenopathy using sonography
    • Wu C., Lee M.M., Huang K., Ko J., Sheen T., and Hsieh F. A probability prediction rule for malignant cervical lymphadenopathy using sonography. Heck Neck 22 (2000) 223-228
    • (2000) Heck Neck , vol.22 , pp. 223-228
    • Wu, C.1    Lee, M.M.2    Huang, K.3    Ko, J.4    Sheen, T.5    Hsieh, F.6
  • 6
    • 0034014958 scopus 로고    scopus 로고
    • Multivariate feature analysis of sonographic findings of metastatic cervical lymph nodes: contribution of blood flow features revealed by power Doppler sonography for predicting metastasis
    • Chikui T., Yonetsu K., and Nakamura T. Multivariate feature analysis of sonographic findings of metastatic cervical lymph nodes: contribution of blood flow features revealed by power Doppler sonography for predicting metastasis. AJNR Am. J. Neuroradiol. 21 (2000) 561-567
    • (2000) AJNR Am. J. Neuroradiol. , vol.21 , pp. 561-567
    • Chikui, T.1    Yonetsu, K.2    Nakamura, T.3
  • 8
    • 13244252474 scopus 로고    scopus 로고
    • Computerized scheme for assessing ultrasonographic features of breast masses
    • Kim K.G., Cho S.W., Min S.J., Kim J.H., Min B.G., and Bae K.T. Computerized scheme for assessing ultrasonographic features of breast masses. Acad. Radiol. 12 (2005) 58-66
    • (2005) Acad. Radiol. , vol.12 , pp. 58-66
    • Kim, K.G.1    Cho, S.W.2    Min, S.J.3    Kim, J.H.4    Min, B.G.5    Bae, K.T.6
  • 9
    • 6344221607 scopus 로고    scopus 로고
    • Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features
    • Joo S., Yang Y.S., Moon W.K., and Kim H.C. Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features. IEEE Trans. Med. Imaging 23 (2004) 1292-1300
    • (2004) IEEE Trans. Med. Imaging , vol.23 , pp. 1292-1300
    • Joo, S.1    Yang, Y.S.2    Moon, W.K.3    Kim, H.C.4
  • 10
    • 0242527043 scopus 로고    scopus 로고
    • Image texture analysis of sonograms in chronic inflammations of thyroid gland
    • Smutek D., Sara R., Sucharda P., Tjahjadi T., and Svec M. Image texture analysis of sonograms in chronic inflammations of thyroid gland. Ultrasound Med. Biol. 29 (2003) 1531-1543
    • (2003) Ultrasound Med. Biol. , vol.29 , pp. 1531-1543
    • Smutek, D.1    Sara, R.2    Sucharda, P.3    Tjahjadi, T.4    Svec, M.5
  • 11
    • 0030215027 scopus 로고    scopus 로고
    • Classification algorithms for quantitative tissue characterization of diffuse liver disease from ultrasound images
    • Kadah Y.M., Farag A.A., Zurada J.M., Badawi A.M., and Youssef A.M. Classification algorithms for quantitative tissue characterization of diffuse liver disease from ultrasound images. IEEE Trans. Med. Imaging 15 (1996) 466-478
    • (1996) IEEE Trans. Med. Imaging , vol.15 , pp. 466-478
    • Kadah, Y.M.1    Farag, A.A.2    Zurada, J.M.3    Badawi, A.M.4    Youssef, A.M.5
  • 12
    • 33746612434 scopus 로고    scopus 로고
    • Sonographic feature extraction of cervical lymph nodes and its relationship with segmentation methods
    • Zhang J.H., Wang Y.Y., Dong Y., and Wang Y. Sonographic feature extraction of cervical lymph nodes and its relationship with segmentation methods. J. Ultrasound Med. 25 (2006) 995-1008
    • (2006) J. Ultrasound Med. , vol.25 , pp. 995-1008
    • Zhang, J.H.1    Wang, Y.Y.2    Dong, Y.3    Wang, Y.4
  • 13
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., and Vapnik V. Support-vector networks. Mach. Learn. 20 (1995) 273-297
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 14
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik V. An overview of statistical learning theory. IEEE Trans. Neural Network 10 (1999) 988-999
    • (1999) IEEE Trans. Neural Network , vol.10 , pp. 988-999
    • Vapnik, V.1
  • 17
    • 0035441331 scopus 로고    scopus 로고
    • The generalization error of the symmetric and scaled support vector machines
    • Feng J., and Williams P. The generalization error of the symmetric and scaled support vector machines. IEEE Trans. Neural Network 12 (2001) 1255-1260
    • (2001) IEEE Trans. Neural Network , vol.12 , pp. 1255-1260
    • Feng, J.1    Williams, P.2
  • 20
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., and Barnhill S. Gene selection for cancer classification using support vector machines. Mach. Learn. 46 (2002) 389-422
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3
  • 21
    • 0002774069 scopus 로고
    • Feature selection algorithm
    • Chen C.H. (Ed), Alphen aan den Rijn, Germany: Sijthoff & Noordhoof
    • Kittler J. Feature selection algorithm. In: Chen C.H. (Ed). Pattern Recognition and Signal Processing (1978), Alphen aan den Rijn, Germany: Sijthoff & Noordhoof 41-60
    • (1978) Pattern Recognition and Signal Processing , pp. 41-60
    • Kittler, J.1
  • 23
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht D.F. A general regression neural network. IEEE Trans. Neural Network 2 (1991) 568-576
    • (1991) IEEE Trans. Neural Network , vol.2 , pp. 568-576
    • Specht, D.F.1
  • 27
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen E. On estimation of a probability density function and mode. Ann. Math. Stat. 33 (1962) 1065-1076
    • (1962) Ann. Math. Stat. , vol.33 , pp. 1065-1076
    • Parzen, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.