메뉴 건너뛰기




Volumn 55, Issue 3, 2012, Pages 163-175

Acute leukemia classification by ensemble particle swarm model selection

Author keywords

Acute leukemia classification; Analysis of bone marrow cell images; Ensemble learning; Full model selection; Morphological classification; Swarm optimization

Indexed keywords

ACUTE LEUKEMIA; BONE MARROW CELLS; ENSEMBLE LEARNING; FULL MODEL; SWARM OPTIMIZATION;

EID: 84863785984     PISSN: 09333657     EISSN: 18732860     Source Type: Journal    
DOI: 10.1016/j.artmed.2012.03.005     Document Type: Article
Times cited : (66)

References (49)
  • 1
    • 84863783056 scopus 로고    scopus 로고
    • The Leukemia and Lymphoma Society (LLS). Leukemia, lymphoma, myeloma facts 2010-2011. Online, Available at [accessed 19.10.11].
    • The Leukemia and Lymphoma Society (LLS). Leukemia, lymphoma, myeloma facts 2010-2011; 2011. Online, Available at [accessed 19.10.11]. http://www.lls.org/content/nationalcontent/resourcecenter/freeeducationmaterials/generalcancer/pdf/facts.pdf.
    • (2011)
  • 2
    • 0017162163 scopus 로고
    • Proposals for the classification of the acute leukaemias. French-American-British (FAB) cooperative group
    • Bennett J., Catovsky D., Daniel M., Flandrin G., Galton D., Gralnick H., et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) cooperative group. British Journal of Haematology 1976, 33(4):451-458.
    • (1976) British Journal of Haematology , vol.33 , Issue.4 , pp. 451-458
    • Bennett, J.1    Catovsky, D.2    Daniel, M.3    Flandrin, G.4    Galton, D.5    Gralnick, H.6
  • 3
    • 79957841773 scopus 로고    scopus 로고
    • Leukemia identification from bone marrow cells images using a machine vision and data mining strategy
    • Gonzalez J.A., Olmos I., Altamirano L., Morales B.A., Reta C., Galindo M., et al. Leukemia identification from bone marrow cells images using a machine vision and data mining strategy. Intelligent Data Analysis 2011, 15(3):443-462.
    • (2011) Intelligent Data Analysis , vol.15 , Issue.3 , pp. 443-462
    • Gonzalez, J.A.1    Olmos, I.2    Altamirano, L.3    Morales, B.A.4    Reta, C.5    Galindo, M.6
  • 9
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286:531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5    Mesirov, J.P.6
  • 11
    • 0036772522 scopus 로고    scopus 로고
    • Bayesian automatic relevance determination algorithms for classifying gene expression data
    • Li Y., Campbell C., Tipping M. Bayesian automatic relevance determination algorithms for classifying gene expression data. Bioinformatics 2002, 18(10):1332-1339.
    • (2002) Bioinformatics , vol.18 , Issue.10 , pp. 1332-1339
    • Li, Y.1    Campbell, C.2    Tipping, M.3
  • 14
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Springer-Verlag, Berlin, Heidelberg, J. Kittler, F. Roli (Eds.)
    • Dietterich T. Ensemble methods in machine learning. First workshop on multiple classifier systems, LNCS, vol. 1857 2000, 1-15. Springer-Verlag, Berlin, Heidelberg. J. Kittler, F. Roli (Eds.).
    • (2000) First workshop on multiple classifier systems, LNCS, vol. 1857 , pp. 1-15
    • Dietterich, T.1
  • 16
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva L., Whitaker C. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 2003, 51:181-207.
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.2
  • 19
    • 0030211964 scopus 로고    scopus 로고
    • Bagging prediction
    • Breiman L. Bagging prediction. Machine Learning 1996, 14:123-140.
    • (1996) Machine Learning , vol.14 , pp. 123-140
    • Breiman, L.1
  • 20
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learning 2001, 45(1):5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 23
    • 84863779619 scopus 로고    scopus 로고
    • Building ensembles with heterogeneous models
    • In: 7th Course on the International School on Neural Nets IIASS. [accessed 31.01.12].
    • Wichard JD, Christian M, Ogorzalek M. Building ensembles with heterogeneous models. In: 7th Course on the International School on Neural Nets IIASS; 2002. [accessed 31.01.12]. http://www.j-wichard.de/publications/salerno_lncs_2003.pdf.
    • (2002)
    • Wichard, J.D.1    Christian, M.2    Ogorzalek, M.3
  • 24
    • 0142245479 scopus 로고    scopus 로고
    • Evolutionary computation for optimal ensemble classifier in lymphoma cancer classification
    • Springer-Verlag, Berlin, Heidelberg, N. Zhong, Z.W. Ras, S. Tsumoto, E. Suzuki (Eds.)
    • Park C., Cho S. Evolutionary computation for optimal ensemble classifier in lymphoma cancer classification. Foundations of intelligent systems, Proceedings of the 14th international symposium, LNCS, vol. 2871 2003, 521-530. Springer-Verlag, Berlin, Heidelberg. N. Zhong, Z.W. Ras, S. Tsumoto, E. Suzuki (Eds.).
    • (2003) Foundations of intelligent systems, Proceedings of the 14th international symposium, LNCS, vol. 2871 , pp. 521-530
    • Park, C.1    Cho, S.2
  • 27
    • 0035202645 scopus 로고    scopus 로고
    • An approach to the automatic design of multiple classifier systems
    • Giacinto G., Roli F. An approach to the automatic design of multiple classifier systems. Pattern Recognition Letters 2001, 22(1):25-33.
    • (2001) Pattern Recognition Letters , vol.22 , Issue.1 , pp. 25-33
    • Giacinto, G.1    Roli, F.2
  • 28
    • 10444224737 scopus 로고    scopus 로고
    • Classifier selection for majority voting
    • Ruta D., Gabrys B. Classifier selection for majority voting. Information Fusion 2005, 6(1):63-81.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 63-81
    • Ruta, D.1    Gabrys, B.2
  • 30
    • 51749116036 scopus 로고    scopus 로고
    • Quickstart guide for CLOP
    • Technical report. Graz University of Technology and Clopinet, May. [accessed 31.01.12].
    • Saffari A, Guyon I. Quickstart guide for CLOP. Technical report. Graz University of Technology and Clopinet, May; 2006. [accessed 31.01.12]. http://www.ymer.org/research/files/clop/QuickStartV1.0.pdf.
    • (2006)
    • Saffari, A.1    Guyon, I.2
  • 33
    • 84919713045 scopus 로고    scopus 로고
    • Evolutionary optimization vs particle swarm optimization: philosophy and performance differences
    • Springer-Verlag, Berlin, Heidelberg, V.W. Porto, N. Saravanana, D. Waagen, A.E. Eiben (Eds.)
    • Angeline P.J. Evolutionary optimization vs particle swarm optimization: philosophy and performance differences. Proceedings of the 7th conference on evolutionary programming, LNCS, vol. 1447 1998, 601-610. Springer-Verlag, Berlin, Heidelberg. V.W. Porto, N. Saravanana, D. Waagen, A.E. Eiben (Eds.).
    • (1998) Proceedings of the 7th conference on evolutionary programming, LNCS, vol. 1447 , pp. 601-610
    • Angeline, P.J.1
  • 34
    • 0038281789 scopus 로고    scopus 로고
    • An analysis of particle swarm optimizers
    • PhD thesis. University of Pretoria, Sudafrica
    • van den Bergh F. An analysis of particle swarm optimizers. PhD thesis. University of Pretoria, Sudafrica; 2001.
    • (2001)
    • van den Bergh, F.1
  • 35
    • 77956907243 scopus 로고    scopus 로고
    • On overfitting in model selection and subsequent selection bias in performance evaluation
    • Cawley G., Talbot N. On overfitting in model selection and subsequent selection bias in performance evaluation. Journal of Machine Learning Research 2010, 11:2079-2107.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 2079-2107
    • Cawley, G.1    Talbot, N.2
  • 38
    • 40649109726 scopus 로고    scopus 로고
    • Analysis of the IJCNN 2007 competition agnostic learning vs. prior knowledge
    • Guyon I., Saffari A., Dror G., Gavin Cawley Analysis of the IJCNN 2007 competition agnostic learning vs. prior knowledge. Neural Networks 2008, 21(2-3):544-550.
    • (2008) Neural Networks , vol.21 , Issue.2-3 , pp. 544-550
    • Guyon, I.1    Saffari, A.2    Dror, G.3    Gavin, C.4
  • 39
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley A. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 1997, 30(5):1145-1159.
    • (1997) Pattern Recognition , vol.30 , Issue.5 , pp. 1145-1159
    • Bradley, A.1
  • 43
    • 84863774433 scopus 로고    scopus 로고
    • Segmentation and classification of leukemia cells from contextual information in digital images
    • Master's thesis. National Institute of Astrophysics, Optics and Electronics, Puebla, Mexico; (Spanish).
    • Reta C. Segmentation and classification of leukemia cells from contextual information in digital images. Master's thesis. National Institute of Astrophysics, Optics and Electronics, Puebla, Mexico; 2009 (Spanish).
    • (2009)
    • Reta, C.1
  • 45
    • 0003684449 scopus 로고    scopus 로고
    • The elements of statistical learning: data mining, inference and prediction
    • Springer-Verlag, Berlin, Heidelberg
    • Hastie T., Tibshirani R., Friedman J. The elements of statistical learning: data mining, inference and prediction. Springer series in statistics 2006, Springer-Verlag, Berlin, Heidelberg.
    • (2006) Springer series in statistics
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 48
    • 40649113941 scopus 로고    scopus 로고
    • Classification with tree-based ensembles applied to the WCCI 2006 performance prediction challenge datasets
    • IEEE
    • Dahinden C. Classification with tree-based ensembles applied to the WCCI 2006 performance prediction challenge datasets. Proceedings of the 19th international joint conference on neural networks 2006, 1669-1672. IEEE.
    • (2006) Proceedings of the 19th international joint conference on neural networks , pp. 1669-1672
    • Dahinden, C.1
  • 49
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 2006, 7:1-30.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.