메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1215-1220

A further analysis on the use of genetic algorithm to configure support vector machines for inter-release fault prediction

Author keywords

fault prediction; genetic algorithm; support vector machines

Indexed keywords

FAULT PREDICTION; FAULT-PRONE; GRID-SEARCH; MACHINE LEARNING TECHNIQUES; SOFTWARE COMPONENT; SOFTWARE SYSTEMS;

EID: 84863587280     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2245276.2231967     Document Type: Conference Paper
Times cited : (47)

References (20)
  • 1
    • 71649110371 scopus 로고    scopus 로고
    • A systematic and comprehensive investigation of methods to build and evaluate fault prediction models
    • Arisholm, E., Briand, L., Johannessen, B.: A systematic and comprehensive investigation of methods to build and evaluate fault prediction models. Journal of Systems and Software 83, (2010), 2-17.
    • (2010) Journal of Systems and Software , vol.83 , pp. 2-17
    • Arisholm, E.1    Briand, L.2    Johannessen, B.3
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L.: Random Forests. Machine Learning 45 (1), (2001), 5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 4
    • 78649803942 scopus 로고    scopus 로고
    • How Effective is Tabu Search to Configure Support Vector Regression for Effort Estimation?
    • ACM NY
    • Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Sarro, F., Mendes, E.: How Effective is Tabu Search to Configure Support Vector Regression for Effort Estimation?. In PROMISE Procs, ACM NY, (2010), 4.
    • (2010) PROMISE Procs , pp. 4
    • Corazza, A.1    Di Martino, S.2    Ferrucci, F.3    Gravino, C.4    Sarro, F.5    Mendes, E.6
  • 6
    • 0028446078 scopus 로고
    • A metrics suite for object oriented design
    • Chidamber, S.R., Kemerer, C. F.: A metrics suite for object oriented design. IEEE TSE, 20(6), (1994), 476-493.
    • (1994) IEEE TSE , vol.20 , Issue.6 , pp. 476-493
    • Chidamber, S.R.1    Kemerer, C.F.2
  • 7
    • 79960238138 scopus 로고    scopus 로고
    • A Genetic Algorithm to Configure Support Vector Machines for Predicting Fault-Prone Components
    • PROFES Procs, Springer
    • Di Martino, S., Ferrucci, F., Gravino, C., Sarro: A Genetic Algorithm to Configure Support Vector Machines for Predicting Fault-Prone Components. In PROFES Procs, LNCS Springer vol. 6759, (2011), 186-201.
    • (2011) LNCS , vol.6759 , pp. 186-201
    • Di Martino, S.1    Ferrucci, F.2    Gravino, C.3    Sarro4
  • 8
    • 40749135790 scopus 로고    scopus 로고
    • Predicting defect-prone software modules using support vector machines
    • DOI 10.1016/j.jss.2007.07.040, PII S016412120700235X
    • Elish, K.O., Elish, M.O.: Predicting defect-prone software modules using support vector machines. Journal of Systems and Software 81(5), (2008), 649-660. (Pubitemid 351389562)
    • (2008) Journal of Systems and Software , vol.81 , Issue.5 , pp. 649-660
    • Elish, K.O.1    Elish, M.O.2
  • 10
    • 36849025506 scopus 로고    scopus 로고
    • Applying machine learning to software fault-proneness prediction
    • Gondra, I.: Applying machine learning to software fault-proneness prediction. Journal of Systems and Software 81 (2008), 186-195.
    • (2008) Journal of Systems and Software , vol.81 , pp. 186-195
    • Gondra, I.1
  • 11
    • 78049356206 scopus 로고    scopus 로고
    • Using the Support Vector Machine as a Classification Method for Software Defect Prediction with Static Code Metrics
    • Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B.: Using the Support Vector Machine as a Classification Method for Software Defect Prediction with Static Code Metrics. Communications in Computer and Information Science, 43 (2009), 223-234.
    • (2009) Communications in Computer and Information Science , vol.43 , pp. 223-234
    • Gray, D.1    Bowes, D.2    Davey, N.3    Sun, Y.4    Christianson, B.5
  • 13
    • 78649783178 scopus 로고    scopus 로고
    • Towards identifying software project clusters with regard to defect prediction
    • ACM NY
    • Jureczko, M, Madeyski, L.: Towards identifying software project clusters with regard to defect prediction. In the PROMISE Procs., ACM NY, (2010), 9.
    • (2010) The PROMISE Procs. , pp. 9
    • Jureczko, M.1    Madeyski, L.2
  • 14
    • 0029343450 scopus 로고
    • Case studies for method and tool evaluation
    • Kitchenham, B., Pickard, L., Peeger, S.: Case studies for method and tool evaluation. IEEE Software 12(4), (1995), 52-62.
    • (1995) IEEE Software , vol.12 , Issue.4 , pp. 52-62
    • Kitchenham, B.1    Pickard, L.2    Peeger, S.3
  • 15
    • 36749047332 scopus 로고    scopus 로고
    • Supervised Machine Learning: A Review of Classification Techniques
    • Kotsiantis, S. B.: Supervised Machine Learning: A Review of Classification Techniques. Informatica 31 (2007) 249-268
    • (2007) Informatica , vol.31 , pp. 249-268
    • Kotsiantis, S.B.1
  • 20
    • 57049118679 scopus 로고    scopus 로고
    • Adapting a Fault Prediction Model to Allow Inter Language Reuse
    • ACM NY
    • Watanabe, S., Kaiya, H., Kaijiri, K.: Adapting a Fault Prediction Model to Allow Inter Language Reuse. In the PROMISE Procs, ACM NY, (2008), 19-24.
    • (2008) The PROMISE Procs , pp. 19-24
    • Watanabe, S.1    Kaiya, H.2    Kaijiri, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.