-
1
-
-
0032787485
-
Internal models for motor control and trajectory planning
-
doi:10.1016/S0959-4388(99)00028-8
-
Kawato, M. 1999 Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 9, 718-727. (doi:10.1016/S0959-4388(99)00028-8)
-
(1999)
Curr. Opin. Neurobiol.
, vol.9
, pp. 718-727
-
-
Kawato, M.1
-
2
-
-
77957753623
-
Modeling discrete and rhythmic movements through motor primitives: A review
-
doi:10.1007/s00422-010-0403-9
-
Degallier, S. & Ijspeert, A. J. 2010 Modeling discrete and rhythmic movements through motor primitives: a review. Biol. Cybernet. 103, 319-338. (doi:10.1007/s00422-010-0403-9)
-
(2010)
Biol. Cybernet.
, vol.103
, pp. 319-338
-
-
Degallier, S.1
Ijspeert, A.J.2
-
3
-
-
34447096227
-
On rhythmic and discrete movements: Reflections, definitions and implications for motor control
-
doi:10.1007/s00221-007-0899-y
-
Hogan, N. & Sternad, D. 2007 On rhythmic and discrete movements: reflections, definitions and implications for motor control. Exp. Brain Res. 181, 13-30. (doi:10.1007/s00221-007-0899-y)
-
(2007)
Exp. Brain Res.
, vol.181
, pp. 13-30
-
-
Hogan, N.1
Sternad, D.2
-
4
-
-
0036025059
-
Sensory control of locomotion: Reflexes versus higher-level control
-
doi:10.1007/978-1-4615-0713-0-41
-
Prochazka, A., Gritsenko, V. & Yakovenko, S. 2002 Sensory control of locomotion: reflexes versus higher-level control. Adv. Exp. Med. Biol. 508, 357-367. (doi:10.1007/978-1-4615-0713-0-41)
-
(2002)
Adv. Exp. Med. Biol.
, vol.508
, pp. 357-367
-
-
Prochazka, A.1
Gritsenko, V.2
Yakovenko, S.3
-
5
-
-
40049092971
-
Central pattern generators for locomotion control in animals and robots: A review
-
doi:10.1016/j.neunet.2008.03.014
-
Ijspeert, A. J. 2008 Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. Official J. Int. Neural Netw. Soc. 21, 642-653. (doi:10.1016/j.neunet.2008.03.014)
-
(2008)
Neural Netw. Official J. Int. Neural Netw. Soc.
, vol.21
, pp. 642-653
-
-
Ijspeert, A.J.1
-
6
-
-
0034616376
-
Howanimalsmove: An integrative view
-
doi:10.1126/science.288.5463.100
-
Dickinson,M.H. 2000Howanimalsmove: an integrative view. Science 288, 100-106. (doi:10.1126/science.288.5463.100)
-
(2000)
Science
, vol.288
, pp. 100-106
-
-
Dickinson, M.H.1
-
7
-
-
0007810449
-
Neural control of locomotion
-
doi:10.2307/1311186
-
Loeb, G. E. 1989 Neural control of locomotion. BioScience 39, 800. (doi:10.2307/1311186)
-
(1989)
BioScience
, vol.39
, pp. 800
-
-
Loeb, G.E.1
-
8
-
-
84902177694
-
Modeling neural control of locomotion: Integration of reflex circuits with CPG
-
Madrid, Spain: Springer
-
Rybak, I., Ivashko, D., Prilutsky, B., Lewis, M. & Chapin, J. 2002 Modeling neural control of locomotion: integration of reflex circuits with CPG. In Artificial neural networks-Icann, pp. 99-104. Madrid, Spain: Springer.
-
(2002)
Artificial Neural Networks-Icann
, pp. 99-104
-
-
Rybak, I.1
Ivashko, D.2
Prilutsky, B.3
Lewis, M.4
Chapin, J.5
-
9
-
-
0031976869
-
Neural control of locomotion. I. The central pattern generator from cats to humans
-
doi:10.1016/S0966-6362(97)00042-8
-
Duysens, J. 1998 Neural control of locomotion. I. The central pattern generator from cats to humans. Gait Posture 7, 131-141. (doi:10.1016/S0966- 6362(97)00042-8)
-
(1998)
Gait Posture
, vol.7
, pp. 131-141
-
-
Duysens, J.1
-
10
-
-
0036144046
-
Central pattern generation of locomotion: A review of the evidence
-
See
-
MacKay-Lyons, M. 2002 Central pattern generation of locomotion: a review of the evidence. Phys. Therapy 82, 69-83. See http://www.ncbi.nlm.nih.gov/ pubmed/11784280.
-
(2002)
Phys. Therapy
, vol.82
, pp. 69-83
-
-
MacKay-Lyons, M.1
-
11
-
-
12344303630
-
Neural control of rhythmic humanmovement: The commoncore hypothesis
-
See
-
Zehr,E.P. 2005 Neural control of rhythmic humanmovement: the commoncore hypothesis. Exerc.SportSci.Rev.33, 54-60. See http://www.ncbi.nlm.nih.gov/ pubmed/15640722.
-
(2005)
Exerc.SportSci.Rev.
, vol.33
, pp. 54-60
-
-
Zehr, E.P.1
-
12
-
-
33845640093
-
Programmable central pattern generators: An application to biped locomotion control
-
New York, NY: IEEE
-
Righetti, L. & Ijspeert, A. J. 2006 Programmable central pattern generators: an application to biped locomotion control. In IEEE Int. Conf. on Robotics and Automation, 15-19 May 2006, Orlando, FL, pp. 1585-1590. New York, NY: IEEE.
-
(2006)
IEEE Int. Conf. on Robotics and Automation, 15-19 May 2006, Orlando, FL
, pp. 1585-1590
-
-
Righetti, L.1
Ijspeert, A.J.2
-
13
-
-
33745877642
-
Motor control programs and walking
-
doi:10.1177/1073858406287987
-
Ivanenko, Y. P., Poppele, R. E. & Lacquaniti, F. 2006 Motor control programs and walking. Neuroscientist 12, 339-348. (doi:10.1177/1073858406287987)
-
(2006)
Neuroscientist
, vol.12
, pp. 339-348
-
-
Ivanenko, Y.P.1
Poppele, R.E.2
Lacquaniti, F.3
-
14
-
-
38749114697
-
Predictive and reactive tuning of the locomotor CPG
-
doi:10.1093/icb/icm065
-
Prochazka, A. & Yakovenko, S. 2007 Predictive and reactive tuning of the locomotor CPG. Integr. Comp. Biol. 47, 474-481. (doi:10.1093/icb/icm065)
-
(2007)
Integr. Comp. Biol.
, vol.47
, pp. 474-481
-
-
Prochazka, A.1
Yakovenko, S.2
-
15
-
-
77952009089
-
Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator
-
doi:10.1007/s00422-010-0373-y
-
Aoi, S., Ogihara, N., Funato, T., Sugimoto, Y. & Tsuchiya, K. 2010 Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator. Biol. Cybernet. 102, 373-387. (doi:10.1007/s00422-010-0373-y)
-
(2010)
Biol. Cybernet.
, vol.102
, pp. 373-387
-
-
Aoi, S.1
Ogihara, N.2
Funato, T.3
Sugimoto, Y.4
Tsuchiya, K.5
-
16
-
-
77952010304
-
Reflexes and preflexes: On the role of sensory feedback on rhythmic patterns in insect locomotion
-
doi:10.1007/s00422-010-0383-9
-
Proctor, J. & Holmes, P. 2010 Reflexes and preflexes: on the role of sensory feedback on rhythmic patterns in insect locomotion. Biol. Cybernet. 102, 513-531. (doi:10.1007/s00422-010-0383-9)
-
(2010)
Biol. Cybernet.
, vol.102
, pp. 513-531
-
-
Proctor, J.1
Holmes, P.2
-
17
-
-
0016168113
-
Peripheral control of movement
-
Stein, R. B. 1974 Peripheral control of movement. Physiol. Rev. 54, 215-243.
-
(1974)
Physiol. Rev.
, vol.54
, pp. 215-243
-
-
Stein, R.B.1
-
18
-
-
0142010646
-
Positive force feedback in bouncing gaits?
-
doi:10.1098/rspb.2003.2454
-
Geyer, H., Seyfarth, A. & Blickhan, R. 2003 Positive force feedback in bouncing gaits? Proc. R. Soc. Lond. B 270, 2173-2183. (doi:10.1098/rspb.2003. 2454)
-
(2003)
Proc. R. Soc. Lond. B
, vol.270
, pp. 2173-2183
-
-
Geyer, H.1
Seyfarth, A.2
Blickhan, R.3
-
19
-
-
0027357534
-
The contribution of muscle properties in the control of explosive movements
-
doi:10.1007/BF00198959
-
van Soest, A. J. & Bobbert, M. F. 1993 The contribution of muscle properties in the control of explosive movements. Biol. Cybernet. 69, 195-204. (doi:10.1007/BF00198959)
-
(1993)
Biol. Cybernet.
, vol.69
, pp. 195-204
-
-
Van Soest, A.J.1
Bobbert, M.F.2
-
20
-
-
0028176125
-
A control strategy for the execution of explosive movements from varying starting positions
-
van Soest, A. J., Bobbert, M. F. & Van Ingen Schenau, G. J. 1994 A control strategy for the execution of explosive movements from varying starting positions. J. Neurophysiol. 71, 1390-1402. (Pubitemid 24121838)
-
(1994)
Journal of Neurophysiology
, vol.71
, Issue.4
, pp. 1390-1402
-
-
Van Soest, A.J.1
Bobbert, M.F.2
Van Ingen, S.G.J.3
-
21
-
-
69749123366
-
Robust passive dynamics of the musculoskeletal system compensate for unexpected surface changes during human hopping
-
doi:10.1152/japplphysiol.91189.2008
-
van der Krogt, M. M., de Graaf, W. W., Farley, C. T., Moritz, C. T., Casius, L. J. R. & Bobbert, M. F. 2009 Robust passive dynamics of the musculoskeletal system compensate for unexpected surface changes during human hopping. J. Appl. Physiol. 107, 801-808. (doi:10.1152/japplphysiol.91189.2008)
-
(2009)
J. Appl. Physiol.
, vol.107
, pp. 801-808
-
-
Van Der Krogt, M.M.1
De Graaf, W.W.2
Farley, C.T.3
Moritz, C.T.4
Casius, L.J.R.5
Bobbert, M.F.6
-
22
-
-
77649203861
-
The role of intrinsic muscle properties for stable hopping-stability is achieved by the force-velocity relation
-
doi:10.1088/1748-3182/5/1/016004
-
Haeufle, D. F. B., Grimmer, S. & Seyfarth, A. 2010 The role of intrinsic muscle properties for stable hopping-stability is achieved by the force-velocity relation. Bioinspir. Biomim. 5, 016004. (doi:10.1088/1748-3182/5/ 1/016004)
-
(2010)
Bioinspir. Biomim.
, vol.5
, pp. 016004
-
-
Haeufle, D.F.B.1
Grimmer, S.2
Seyfarth, A.3
-
23
-
-
0019296395
-
Neural basis of rhythmic behavior in animals
-
doi:10.1126/science.7423199
-
Delcomyn, F. 1980 Neural basis of rhythmic behavior in animals. Science 210, 492-498. (doi:10.1126/science.7423199)
-
(1980)
Science
, vol.210
, pp. 492-498
-
-
Delcomyn, F.1
-
24
-
-
24944584736
-
Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury
-
doi:10.1007/s00422-005-0559-x
-
Paul, C., Bellotti, M., Jezernik, S. & Curt, A. 2005 Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury. Biol. Cybernet. 93, 153-170. (doi:10.1007/s00422-005-0559-x)
-
(2005)
Biol. Cybernet.
, vol.93
, pp. 153-170
-
-
Paul, C.1
Bellotti, M.2
Jezernik, S.3
Curt, A.4
-
25
-
-
0036526713
-
The relative roles of feedforward and feedback in the control of rhythmic movements
-
See
-
Kuo, A. D. 2002 The relative roles of feedforward and feedback in the control of rhythmic movements. Motor Control 6, 129-145. See http://www.ncbi.nlm.nih.gov/pubmed/12122223.
-
(2002)
Motor Control
, vol.6
, pp. 129-145
-
-
Kuo, A.D.1
-
26
-
-
34948832718
-
Unsteady locomotion: Integrating muscle function with whole body dynamics and neuromuscular control
-
doi:10.1242/jeb.005801
-
Biewener, A. & Daley, M. 2007 Unsteady locomotion: integrating muscle function with whole body dynamics and neuromuscular control. J. Exp. Biol. 210, 2949-2960. (doi:10.1242/jeb.005801)
-
(2007)
J. Exp. Biol.
, vol.210
, pp. 2949-2960
-
-
Biewener, A.1
Daley, M.2
-
27
-
-
33750189868
-
Assessing sensory function in locomotor systems using neuro-mechanical simulations
-
doi:10.1016/j.tins.2006.08.007
-
Pearson, K. G., Ekeberg, O. & Büschges, A. 2006 Assessing sensory function in locomotor systems using neuro-mechanical simulations. Trends Neurosci. 29, 625-631. (doi:10.1016/j.tins.2006.08.007)
-
(2006)
Trends Neurosci.
, vol.29
, pp. 625-631
-
-
Pearson, K.G.1
Ekeberg, O.2
Büschges, A.3
-
28
-
-
0033372952
-
Templates and anchors: Neuromechanical hypotheses of legged locomotion on land
-
See
-
Full, R. J. & Koditschek, D. E. 1999 Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J. Exp. Biol. 202, 3325-3332. See http://www.ncbi.nlm.nih.gov/pubmed/10562515.
-
(1999)
J. Exp. Biol.
, vol.202
, pp. 3325-3332
-
-
Full, R.J.1
Koditschek, D.E.2
-
29
-
-
0036464126
-
Quantifying dynamic stability and maneuverability in legged locomotion
-
doi:10.1093/icb/42.1.149
-
Full, R. J., Kubow, T., Schmitt, J., Holmes, P. & Koditschek, D. 2002 Quantifying dynamic stability and maneuverability in legged locomotion. Integr. Comp. Biol. 42, 149-157. (doi:10.1093/icb/42.1.149)
-
(2002)
Integr. Comp. Biol.
, vol.42
, pp. 149-157
-
-
Full, R.J.1
Kubow, T.2
Schmitt, J.3
Holmes, P.4
Koditschek, D.5
-
30
-
-
48249155402
-
Stable running with segmented legs
-
doi:10.1177/0278364908095136
-
Rummel, J. & Seyfarth, A. 2008 Stable running with segmented legs. Int. J. Robot. Res. 27, 919-934. (doi:10.1177/0278364908095136)
-
(2008)
Int. J. Robot. Res.
, vol.27
, pp. 919-934
-
-
Rummel, J.1
Seyfarth, A.2
-
31
-
-
0015173909
-
Observations on the control of stepping and hopping movements in man
-
See
-
Melvill Jones, G. M. & Watt, D. G. 1971 Observations on the control of stepping and hopping movements in man. J. Physiol. 219, 709-727. See http://www.ncbi.nlm.nih.gov/pubmed/5157598.
-
(1971)
J. Physiol.
, vol.219
, pp. 709-727
-
-
Melvill Jones, G.M.1
Watt, D.G.2
-
32
-
-
0026320429
-
Hopping frequency in humans: A test of how springs set stride frequency in bouncing gaits
-
Farley, C. T., Blickhan, R., Saito, J. & Taylor, C. R. 1991 Hopping frequency in humans: a test of how springs set stride frequency in bouncing gaits. J. Appl. Physiol. 71, 2127-2132.
-
(1991)
J. Appl. Physiol.
, vol.71
, pp. 2127-2132
-
-
Farley, C.T.1
Blickhan, R.2
Saito, J.3
Taylor, C.R.4
-
33
-
-
0033106176
-
Leg stiffness primarily depends on ankle stiffness during human hopping
-
DOI 10.1016/S0021-9290(98)00170-5, PII S0021929098001705
-
Farley, C. T. & Morgenroth, D. C. 1999 Leg stiffness primarily depends on ankle stiffness during human hopping. J. Exp. Biol. 32, 267-273. (Pubitemid 29125450)
-
(1999)
Journal of Biomechanics
, vol.32
, Issue.3
, pp. 267-273
-
-
Farley, C.T.1
Morgenroth, D.C.2
-
34
-
-
0037837474
-
How we walk: Central control of muscle activity during human walking
-
doi:10.1177/1073858403251978
-
Nielsen, J. B. 2003 How we walk: central control of muscle activity during human walking. Neuroscientist 9, 195. (doi:10.1177/1073858403251978)
-
(2003)
Neuroscientist
, vol.9
, pp. 195
-
-
Nielsen, J.B.1
-
35
-
-
84855973170
-
Central pattern generators: Sensory feedback
-
ed. L. R. Squire, Oxford: Academic Press. (doi:10.1016/B978-008045046-9. 01949-5)
-
Friesen, W. O. 2009 Central pattern generators: sensory feedback. In (ed. L. R. Squire), Encyclopedia of neuroscience, pp. 701-709. Oxford: Academic Press. (doi:10.1016/B978-008045046-9.01949-5)
-
(2009)
Encyclopedia of Neuroscience
, pp. 701-709
-
-
Friesen, W.O.1
-
36
-
-
78649338530
-
A phasereduced neuro-mechanical model for insect locomotion: Feedforward stability and proprioceptive feedback
-
doi:10.1098/rsta.2010.0134
-
Proctor, J., Kukillaya, R. P. & Holmes, P. 2010 A phasereduced neuro-mechanical model for insect locomotion: feedforward stability and proprioceptive feedback. Phil. Trans. R. Soc. A 368, 5087-5104. (doi:10.1098/rsta.2010.0134)
-
(2010)
Phil. Trans. R. Soc. A
, vol.368
, pp. 5087-5104
-
-
Proctor, J.1
Kukillaya, R.P.2
Holmes, P.3
-
37
-
-
77950541757
-
Contribution of afferent feedback and descending drive to human hopping
-
doi:10.1113/jphysiol.2009.182709
-
Zuur, A. T., Lundbye-Jensen, J., Leukel, C., Taube, W., Grey, M. J., Gollhofer, A., Nielsen, J. B. & Gruber, M. 2010 Contribution of afferent feedback and descending drive to human hopping. J. Physiol. 588, 799-807. (doi:10.1113/jphysiol.2009.182709)
-
(2010)
J. Physiol.
, vol.588
, pp. 799-807
-
-
Zuur, A.T.1
Lundbye-Jensen, J.2
Leukel, C.3
Taube, W.4
Grey, M.J.5
Gollhofer, A.6
Nielsen, J.B.7
Gruber, M.8
-
38
-
-
33644870700
-
Contribution of feedback and feedforward strategies to locomotor adaptations
-
doi:10.1152/jn.00473.2005
-
Lam, T., Anderschitz, M. & Dietz, V. 2006 Contribution of feedback and feedforward strategies to locomotor adaptations. J. Neurophysiol. 95, 766-773. (doi:10.1152/jn.00473.2005)
-
(2006)
J. Neurophysiol.
, vol.95
, pp. 766-773
-
-
Lam, T.1
Anderschitz, M.2
Dietz, V.3
-
39
-
-
84863594424
-
Modelling the interplay of central pattern generation and sensory feedback in the neuromuscular control of running
-
doi:10.1016/j.cbpa.2009.04.243
-
Daley, M. A., Righetti, L. & Ijspeert, A. J. 2009 Modelling the interplay of central pattern generation and sensory feedback in the neuromuscular control of running. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 153, 135. (doi:10.1016/j.cbpa.2009.04.243)
-
(2009)
Comp. Biochem. Physiol. Part A Mol. Integr. Physiol.
, vol.153
, pp. 135
-
-
Daley, M.A.1
Righetti, L.2
Ijspeert, A.J.3
-
40
-
-
0032111801
-
Intrinsic muscle properties facilitate locomotor control-a computer simulation study
-
See
-
Gerritsen, K. G. M., van Den Bogert, A. J., Hulliger, M. & Zernicke, R. F. 1998 Intrinsic muscle properties facilitate locomotor control-a computer simulation study. Motor Control 2, 206-220. See http://www.ncbi.nlm.nih.gov/ pubmed/9644290.
-
(1998)
Motor Control
, vol.2
, pp. 206-220
-
-
Gerritsen, K.G.M.1
Van Den Bogert, A.J.2
Hulliger, M.3
Zernicke, R.F.4
-
41
-
-
15444370297
-
Brain or muscles
-
Blickhan, R., Wagner, H. & Seyfarth, A. 2003 Brain or muscles. Recent Res. Dev. Biomech. 1, 215-245.
-
(2003)
Recent Res. Dev. Biomech.
, vol.1
, pp. 215-245
-
-
Blickhan, R.1
Wagner, H.2
Seyfarth, A.3
-
42
-
-
0001770945
-
A reductionist approach to creating and using neuromusculoskeletal models
-
eds J. M. Winters & P. Crago, New York, NY: Springer. See
-
Brown, I. E. & Loeb, G. E. 2000 A reductionist approach to creating and using neuromusculoskeletal models. In Biomechanics and neural control of posture and movement (eds J. M. Winters & P. Crago), pp 148-163. New York, NY: Springer. See http://bme.usc.edu/assets/004/55325.pdf.
-
(2000)
Biomechanics and Neural Control of Posture and Movement
, pp. 148-163
-
-
Brown, I.E.1
Loeb, G.E.2
-
43
-
-
17444402095
-
Threading neural feedforward into a mechanical spring: How biology exploits physics in limb control
-
doi:10.1007/s00422-005-0542-6
-
Kalveram, K. T., Schinauer, T., Beirle, S., Richter, S. & Jansen-Osmann, P. 2005 Threading neural feedforward into a mechanical spring: how biology exploits physics in limb control. Biol. Cybernet. 92, 229-240. (doi:10.1007/s00422-005-0542-6)
-
(2005)
Biol. Cybernet.
, vol.92
, pp. 229-240
-
-
Kalveram, K.T.1
Schinauer, T.2
Beirle, S.3
Richter, S.4
Jansen-Osmann, P.5
-
44
-
-
71149092674
-
Inverse biomimetics: How robots can help to verify concepts concerning sensorimotor control of human arm and leg movements
-
doi:10.1016/j.jphysparis.2009.08.006
-
Kalveram, K. T. & Seyfarth, A. 2009 Inverse biomimetics: how robots can help to verify concepts concerning sensorimotor control of human arm and leg movements. J. Physiol. Paris 103, 232-243. (doi:10.1016/j.jphysparis.2009.08. 006)
-
(2009)
J. Physiol. Paris
, vol.103
, pp. 232-243
-
-
Kalveram, K.T.1
Seyfarth, A.2
-
45
-
-
84857527173
-
Energy management that generates hopping. Comparison of virtual, robotic and human bouncing
-
Berlin: Springer
-
Kalveram, K. T., Haeufle, D. F. B., Grimmer, S. & Seyfarth, A. 2010 Energy management that generates hopping. Comparison of virtual, robotic and human bouncing. In Proc. Int. Conf. on Simulation, Modeling and Programming for Autonomous Robots 2010, 15-18 November, Darmstadt, Germany, pp. 147-156. Berlin: Springer.
-
(2010)
Proc. Int. Conf. on Simulation, Modeling and Programming for Autonomous Robots 2010, 15-18 November, Darmstadt, Germany
, pp. 147-156
-
-
Kalveram, K.T.1
Haeufle, D.F.B.2
Grimmer, S.3
Seyfarth, A.4
-
46
-
-
0042420446
-
Mechanical models for insect locomotion: Active muscles and energy losses
-
doi:10.1007/s00422-003-0404-z
-
Schmitt, J. & Holmes, P. 2003 Mechanical models for insect locomotion: active muscles and energy losses. Biol. Cybernet. 89, 43-55. (doi:10.1007/s00422-003-0404-z)
-
(2003)
Biol. Cybernet.
, vol.89
, pp. 43-55
-
-
Schmitt, J.1
Holmes, P.2
-
47
-
-
3242747634
-
Mechanical aspects of legged locomotion control
-
doi:10.1016/j.asd.2004.06.003
-
Koditschek, D. E., Full, R. J. & Buehler, M. 2004 Mechanical aspects of legged locomotion control. Arthropod Struct. Dev. 33, 251-272. (doi:10.1016/j.asd.2004.06.003)
-
(2004)
Arthropod Struct. Dev.
, vol.33
, pp. 251-272
-
-
Koditschek, D.E.1
Full, R.J.2
Buehler, M.3
-
48
-
-
67651089873
-
Neuromechanical models for insect locomotion: Stability, maneuverability, and proprioceptive feedback
-
doi:10.1063/1.3141306
-
Kukillaya, R., Proctor, J. & Holmes, P. 2009 Neuromechanical models for insect locomotion: stability, maneuverability, and proprioceptive feedback. Chaos 19, 026107. (doi:10.1063/1.3141306)
-
(2009)
Chaos
, vol.19
, pp. 026107
-
-
Kukillaya, R.1
Proctor, J.2
Holmes, P.3
-
49
-
-
77953234105
-
A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities
-
doi:10.1109/TNSRE.2010.2047592
-
Geyer, H. & Herr, H. 2010 A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 263-273. (doi:10.1109/TNSRE.2010.2047592)
-
(2010)
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.18
, pp. 263-273
-
-
Geyer, H.1
Herr, H.2
-
50
-
-
0000308710
-
Similarity in multilegged locomotion: Bouncing like a monopode
-
doi:10.1007/BF00197760
-
Blickhan, R. & Full, R. J. 1993 Similarity in multilegged locomotion: bouncing like a monopode. J. Comp. Physiol. A 173, 509-517. (doi:10.1007/BF00197760)
-
(1993)
J. Comp. Physiol. A
, vol.173
, pp. 509-517
-
-
Blickhan, R.1
Full, R.J.2
|