메뉴 건너뛰기




Volumn 22, Issue 5, 2012, Pages 1085-1098

Semiparametric transformation models with Bayesian P-splines

Author keywords

MCMC method; Nonlinear mixed model; Nonparametric transformation; Random Ray algorithm

Indexed keywords


EID: 84863548664     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-011-9280-x     Document Type: Article
Times cited : (26)

References (42)
  • 1
    • 0002275621 scopus 로고    scopus 로고
    • MCMC for nonlinear hierarchical models
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhalter (Eds.), London/Boca Raton: Chapman & Hall/CRC Press
    • Bennett, J. E., Racine-Poon, A., Wakefield, J. C.: MCMC for nonlinear hierarchical models. In: Gilks, W. R., Richardson, S., Spiegelhalter, D. J. (eds.) Markov Chain Monte Carlo in Practice, pp. 339-357. Chapman & Hall/CRC Press, London/Boca Raton (1996).
    • (1996) Markov Chain Monte Carlo in Practice , pp. 339-357
    • Bennett, J.E.1    Racine-Poon, A.2    Wakefield, J.C.3
  • 2
    • 84910378827 scopus 로고
    • An analysis of transformations revisited
    • Bickel, P. J., Doksum, K. A.: An analysis of transformations revisited. J. Am. Stat. Assoc. 76, 296-311 (1981).
    • (1981) J. Am. Stat. Assoc. , vol.76 , pp. 296-311
    • Bickel, P.J.1    Doksum, K.A.2
  • 3
    • 84993698837 scopus 로고    scopus 로고
    • Bayesian varying-coefficient models using adaptive regression splines
    • Biller, C., Fahrmeir, L.: Bayesian varying-coefficient models using adaptive regression splines. Stat. Model. 1, 195-211 (2001).
    • (2001) Stat. Model. , vol.1 , pp. 195-211
    • Biller, C.1    Fahrmeir, L.2
  • 4
    • 0000133998 scopus 로고
    • An analysis of transformations
    • Box, G., Cox, D. R.: An analysis of transformations. J. R. Stat. Soc. B 26, 211-246 (1964).
    • (1964) J. R. Stat. Soc. B , vol.26 , pp. 211-246
    • Box, G.1    Cox, D.R.2
  • 5
    • 38349057309 scopus 로고    scopus 로고
    • Monotonic regression based on bayesian P-splines: an application to estimating price response functions from store-level scanner data
    • Brezger, A., Steiner, W.: Monotonic regression based on bayesian P-splines: an application to estimating price response functions from store-level scanner data. J. Bus. Econ. Stat. 26, 90-104 (2008).
    • (2008) J. Bus. Econ. Stat. , vol.26 , pp. 90-104
    • Brezger, A.1    Steiner, W.2
  • 7
    • 0040211214 scopus 로고
    • Performance of the Gibbs, hit-and-run, and Metropolis samplers
    • Chen, M., Schmeiser, B.: Performance of the Gibbs, hit-and-run, and Metropolis samplers. J. Comput. Graph. Stat. 2, 251-272 (1993).
    • (1993) J. Comput. Graph. Stat. , vol.2 , pp. 251-272
    • Chen, M.1    Schmeiser, B.2
  • 8
    • 21344474305 scopus 로고    scopus 로고
    • Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models
    • Cowles, M. K.: Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models. Stat. Comput. 6, 11 (1996).
    • (1996) Stat. Comput. , vol.6 , pp. 11
    • Cowles, M.K.1
  • 9
    • 1542722922 scopus 로고
    • On the beta transformation family
    • David, M. R.: On the beta transformation family. Technometrics 35, 72-81 (1993).
    • (1993) Technometrics , vol.35 , pp. 72-81
    • David, M.R.1
  • 11
    • 0010045457 scopus 로고    scopus 로고
    • Bayesian curve fitting with free-knot splines
    • DiMatteo, I., Genovese, C. R., Kass, R. E.: Bayesian curve fitting with free-knot splines. Biometrika 88, 1055-1071 (2001).
    • (2001) Biometrika , vol.88 , pp. 1055-1071
    • Dimatteo, I.1    Genovese, C.R.2    Kass, R.E.3
  • 12
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalities
    • Eilers, P. H. C., Marx, B. D.: Flexible smoothing with B-splines and penalities. Stat. Sci. 11, 89-121 (1996).
    • (1996) Stat. Sci. , vol.11 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 13
    • 67649126248 scopus 로고    scopus 로고
    • Client and program factors associated with dropout from court mandated drug treatment
    • Evans, E., Li, L., Hser, Y. I.: Client and program factors associated with dropout from court mandated drug treatment. Eval. Program Plann. 32, 204-212 (2009).
    • (2009) Eval. Program Plann. , vol.32 , pp. 204-212
    • Evans, E.1    Li, L.2    Hser, Y.I.3
  • 14
    • 0442327766 scopus 로고    scopus 로고
    • Estimation for the Box-Cox transformation model without assuming parametric error
    • Foster, A. M., Tian, L., Wei, L. J.: Estimation for the Box-Cox transformation model without assuming parametric error. J. Am. Stat. Assoc. 96, 1097-1101 (2001).
    • (2001) J. Am. Stat. Assoc. , vol.96 , pp. 1097-1101
    • Foster, A.M.1    Tian, L.2    Wei, L.J.3
  • 15
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A., Rubin, D. B.: Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457-511 (1992).
    • (1992) Stat. Sci. , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 16
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721-741 (1984).
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 17
    • 0002388372 scopus 로고    scopus 로고
    • Strategies for improving MCMC
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhalter (Eds.), London/Boca Raton: Chapman & Hall/CRC
    • Gilks, W. R., Roberts, G. O.: Strategies for improving MCMC. In: Gilks, W. R., Richardson, S., Spiegelhalter, D. J. (eds.) Markov Chain Monte Carlo in Practice, pp. 89-114. Chapman & Hall/CRC, London/Boca Raton (1996).
    • (1996) Markov Chain Monte Carlo in Practice , pp. 89-114
    • Gilks, W.R.1    Roberts, G.O.2
  • 18
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their application
    • Hastings, W. K.: Monte Carlo sampling methods using Markov chains and their application. Biometrika 57, 97-100 (1970).
    • (1970) Biometrika , vol.57 , pp. 97-100
    • Hastings, W.K.1
  • 19
    • 0001624789 scopus 로고    scopus 로고
    • Linear regression after spline transformation
    • He, X., Shen, L.: Linear regression after spline transformation. Biometrika 84, 474-481 (1997).
    • (1997) Biometrika , vol.84 , pp. 474-481
    • He, X.1    Shen, L.2
  • 20
    • 0036749901 scopus 로고    scopus 로고
    • Baeysian variable and transformation selection in linear regression
    • Hoeting, J. A., Raftery, A. E., Madigen, D.: Baeysian variable and transformation selection in linear regression. J. Comput. Graph. Stat. 11, 485-507 (2002).
    • (2002) J. Comput. Graph. Stat. , vol.11 , pp. 485-507
    • Hoeting, J.A.1    Raftery, A.E.2    Madigen, D.3
  • 23
    • 0034360865 scopus 로고    scopus 로고
    • Using a Box-Cox transformation in analysis of longitudinal data with incomplete responses
    • Lipsitz, S. R., Ibrahim, J., Molenberghs, G.: Using a Box-Cox transformation in analysis of longitudinal data with incomplete responses. J. R. Stat. Soc., Ser. C, Appl. Stat. 49, 287-296 (2000).
    • (2000) J. R. Stat. Soc., Ser. C, Appl. Stat. , vol.49 , pp. 287-296
    • Lipsitz, S.R.1    Ibrahim, J.2    Molenberghs, G.3
  • 24
    • 0442309554 scopus 로고    scopus 로고
    • The Multiple-Try method and local optimization in Metropolis sampling
    • Liu, J. S., Liang, F., Wong, W. H.: The Multiple-Try method and local optimization in Metropolis sampling. J. Am. Stat. Assoc. 95, 121-133 (2000).
    • (2000) J. Am. Stat. Assoc. , vol.95 , pp. 121-133
    • Liu, J.S.1    Liang, F.2    Wong, W.H.3
  • 25
    • 0001256114 scopus 로고
    • Generalized linear models with unknown link functions
    • Mallick, B. K., Gelfand, A.: Generalized linear models with unknown link functions. Biometrika 81, 237-245 (1994).
    • (1994) Biometrika , vol.81 , pp. 237-245
    • Mallick, B.K.1    Gelfand, A.2
  • 26
    • 0037336497 scopus 로고    scopus 로고
    • A Bayesian semiparametric transformation model incorporating frailties
    • Mallick, B. K., Walker, S.: A Bayesian semiparametric transformation model incorporating frailties. J. Stat. Plan. Inference 112, 159-174 (2003).
    • (2003) J. Stat. Plan. Inference , vol.112 , pp. 159-174
    • Mallick, B.K.1    Walker, S.2
  • 28
    • 38149074729 scopus 로고    scopus 로고
    • Fitting generalized linear models with unspecified link function: a P-spline approach
    • Muggeo, V. M. R., Ferrara, G.: Fitting generalized linear models with unspecified link function: a P-spline approach. Comput. Stat. Data Anal. 52, 2529-2537 (2008).
    • (2008) Comput. Stat. Data Anal. , vol.52 , pp. 2529-2537
    • Muggeo, V.M.R.1    Ferrara, G.2
  • 29
    • 1342308648 scopus 로고
    • Nonparametric transformations for both sides of a regression model
    • Nychka, D., Ruppert, D.: Nonparametric transformations for both sides of a regression model. J. R. Stat. Soc. B 57, 519-532 (1995).
    • (1995) J. R. Stat. Soc. B , vol.57 , pp. 519-532
    • Nychka, D.1    Ruppert, D.2
  • 30
    • 0011525457 scopus 로고
    • A Bayesian approach to transformations to normality
    • Pericchi, L. R.: A Bayesian approach to transformations to normality. Biometrika 68, 35-43 (1981).
    • (1981) Biometrika , vol.68 , pp. 35-43
    • Pericchi, L.R.1
  • 32
    • 84972507631 scopus 로고
    • Monotone regression splines in action
    • Ramsay, J. O.: Monotone regression splines in action. Stat. Sci. 3, 425-461 (1988).
    • (1988) Stat. Sci. , vol.3 , pp. 425-461
    • Ramsay, J.O.1
  • 33
    • 0001305816 scopus 로고    scopus 로고
    • Estimating smooth monotone functions
    • Ramsay, J. O.: Estimating smooth monotone functions. J. Am. Stat. Assoc. 60, 365-375 (1998).
    • (1998) J. Am. Stat. Assoc. , vol.60 , pp. 365-375
    • Ramsay, J.O.1
  • 35
    • 0034364839 scopus 로고    scopus 로고
    • Latent variable models with mixed continuous and polytomous data
    • Shi, J. Q., Lee, S. Y.: Latent variable models with mixed continuous and polytomous data. J. R. Stat. Soc. B 62, 77-87 (2000).
    • (2000) J. R. Stat. Soc. B , vol.62 , pp. 77-87
    • Shi, J.Q.1    Lee, S.Y.2
  • 36
    • 0000824232 scopus 로고    scopus 로고
    • Nonparametric regression using Bayesian variable selection
    • Smith, M., Kohn, R.: Nonparametric regression using Bayesian variable selection. J. Econom. 75, 317-343 (1996).
    • (1996) J. Econom. , vol.75 , pp. 317-343
    • Smith, M.1    Kohn, R.2
  • 37
    • 77956668313 scopus 로고    scopus 로고
    • Semiparametric latent variable models with Bayesian P-splines
    • Song, X. Y., Lu, Z. H.: Semiparametric latent variable models with Bayesian P-splines. J. Comput. Graph. Stat. 19, 590-608 (2010).
    • (2010) J. Comput. Graph. Stat. , vol.19 , pp. 590-608
    • Song, X.Y.1    Lu, Z.H.2
  • 38
    • 0034374610 scopus 로고    scopus 로고
    • Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods
    • Stephens, M.: Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods. Ann. Stat. 28(1), 40-74 (2000).
    • (2000) Ann. Stat. , vol.28 , Issue.1 , pp. 40-74
    • Stephens, M.1
  • 39
    • 42349102094 scopus 로고    scopus 로고
    • Bayesian hierarchical curve registration
    • Telesca, D., Inoue, L. Y. T.: Bayesian hierarchical curve registration. J. Am. Stat. Assoc. 103, 328-339 (2008).
    • (2008) J. Am. Stat. Assoc. , vol.103 , pp. 328-339
    • Telesca, D.1    Inoue, L.Y.T.2
  • 40
    • 0011646341 scopus 로고
    • Estimating transformations for regression via additivity and variance stabilization
    • Tibshirani, R.: Estimating transformations for regression via additivity and variance stabilization. J. Am. Stat. Assoc. 83, 394-405 (1988).
    • (1988) J. Am. Stat. Assoc. , vol.83 , pp. 394-405
    • Tibshirani, R.1
  • 41
    • 84864545038 scopus 로고
    • Nonparametric estimation of the transformation in the transform-both-sides regression model
    • Wang, N., Ruppert, D.: Nonparametric estimation of the transformation in the transform-both-sides regression model. J. Am. Stat. Assoc. 90, 522-534 (1995).
    • (1995) J. Am. Stat. Assoc. , vol.90 , pp. 522-534
    • Wang, N.1    Ruppert, D.2
  • 42
    • 84863538232 scopus 로고    scopus 로고
    • Bayesian transformation hazard models
    • IMS Lecture Notes-Monograph Series, J. Rojo (Ed.), Beachwood: Institute of Mathematical Statistics
    • Yin, G., Ibrahim, J.: Bayesian transformation hazard models. In: Rojo, J. (ed.) Optimality: The Second Erich L. Lehmann Symposium. IMS Lecture Notes-Monograph Series, vol. 49, pp. 170-182. Institute of Mathematical Statistics, Beachwood (2006).
    • (2006) Optimality: The Second Erich L. Lehmann Symposium , vol.49 , pp. 170-182
    • Yin, G.1    Ibrahim, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.