메뉴 건너뛰기




Volumn 22, Issue 2, 2012, Pages 555-574

Extended BIC for small-n-large-P sparse GLM

Author keywords

Consistency; Exponential family; Extended Bayes information criterion; Feature selection; Generalized linear model; Small n large P

Indexed keywords


EID: 84863363283     PISSN: 10170405     EISSN: None     Source Type: Journal    
DOI: 10.5705/ss.2010.216     Document Type: Article
Times cited : (190)

References (32)
  • 1
    • 33746242092 scopus 로고    scopus 로고
    • Adapting to unknown sparsity by controlling the false discovery rate
    • DOI 10.1214/009053606000000074
    • Abramovich, F., Benjamini, Y., Donoho, D. L. and Johnstone, I. M. (2006). Adapting to unknown sparsity by controlling the false discovery rate. Ann. Statist. 34, 584-653. (Pubitemid 44091387)
    • (2006) Annals of Statistics , vol.34 , Issue.2 , pp. 584-653
    • Abramovich, F.1    Benjamini, Y.2    Donoho, D.L.3    Johnstone, I.M.4
  • 2
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • (Edited by B. N. Petrox and F. Caski),. Budapest: Akademiai Kiado
    • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second Int. Symp. Info. Theory (Edited by B. N. Petrox and F. Caski), 267-281. Budapest: Akademiai Kiado.
    • (1973) Second Int. Symp. Info. Theory , pp. 267-281
    • Akaike, H.1
  • 3
    • 0001677717 scopus 로고
    • Controlling the false discovery rate - A practical and powerful approach to multiple testing
    • Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate - A practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57, 289-30.
    • (1995) J. Roy. Statist. Soc. Ser. B , vol.57 , pp. 289-30
    • Benjamini, Y.1    Hochberg, Y.2
  • 4
    • 3142698408 scopus 로고    scopus 로고
    • Modifying the Schwarz Bayesian information criterion to locate multiple interacting quantitative trait loci
    • DOI 10.1534/genetics.103.021683
    • Bogdan, M., Doerge, R. and Ghosh, J. K. (2004). Modifying the Schwarz Bayesian information criterion to locate multiple interacting quantitative trait loci. Genetics 167, 989-999. (Pubitemid 38931883)
    • (2004) Genetics , vol.167 , Issue.2 , pp. 989-999
    • Bogdan, M.1    Ghosh, J.K.2    Doerge, R.W.3
  • 5
    • 0036433546 scopus 로고    scopus 로고
    • A model selection approach for the identification of quantitative trait loci in experimental crosses
    • Broman, K. W. and Speed, T. P. (2002). A model selection approach for the identification of quantitative trait loci in experimental crosses. J. Roy. Statist. Soc. Ser. B 64, 641-656.
    • (2002) J. Roy. Statist. Soc. Ser. B , vol.64 , pp. 641-656
    • Broman, K.W.1    Speed, T.P.2
  • 6
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • Candes, E. and Tao, T. (2007). The Dantzig selector: statistical estimation when p is much larger than n. Ann. Statist. 35, 2313-2351.
    • (2007) Ann. Statist. , vol.35 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 7
    • 50949108781 scopus 로고    scopus 로고
    • Extended Bayesian information criterion for model selection with large model space
    • Chen, J. and Chen, Z. (2008). Extended Bayesian information criterion for model selection with large model space. Biometrika, 94, 759-771.
    • (2008) Biometrika , vol.94 , pp. 759-771
    • Chen, J.1    Chen, Z.2
  • 9
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation
    • Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31, 377-403.
    • (1979) Numer. Math. , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 12
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via non-concave penalized likelihood and its oracle properties
    • Fan, J. and Li, R. (2001). Variable selection via non-concave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96, 1348-6.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 1348-6
    • Fan, J.1    Li, R.2
  • 13
    • 84878031768 scopus 로고    scopus 로고
    • Statistical challenges with high dimensionality: Feature selection in knowledge discovery
    • (Edited by M. Sanz-Sole, J. Soria, J. L. Varona, J. Verdera)
    • Fan, J. and Li, R. (2006). Statistical challenges with high dimensionality: Feature selection in knowledge discovery. In Proceedings of the International Congress of Mathematicians (Edited by M. Sanz-Sole, J. Soria, J. L. Varona, J. Verdera), Vol. III, 595-622.
    • (2006) Proceedings of the International Congress of Mathematicians , vol.3 , pp. 595-622
    • Fan, J.1    Li, R.2
  • 14
    • 21844523862 scopus 로고
    • The risk inflation criterion for multiple regression
    • Foster, D. P. and George, E. I. (1994). The risk inflation criterion for multiple regression. Ann. Statist. 22, 1947-1975.
    • (1994) Ann. Statist. , vol.22 , pp. 1947-1975
    • Foster, D.P.1    George, E.I.2
  • 15
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman, J., Hastie, T. and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. J. Statist. Soft. 33.
    • (2010) J. Statist. Soft. , pp. 33
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 16
    • 0035214299 scopus 로고    scopus 로고
    • Trimming, weighting, and grouping SNPs in human case-control association studies
    • Hoh, J., Wille, A. and Ott, J. (2008). Trimming, weighting, and grouping SNPs in human case-control association studies. Genome Research 11, 2115-2119.
    • (2008) Genome Research , vol.11 , pp. 2115-2119
    • Hoh, J.1    Wille, A.2    Ott, J.3
  • 17
    • 51049087315 scopus 로고    scopus 로고
    • Fence methods for mixed model selection
    • Jiang, J., Rao, J. S., Gu, Z. and Nguyen T. (2008). Fence methods for mixed model selection. Ann. Statist. 36, 1669-1692.
    • (2008) Ann. Statist. , vol.36 , pp. 1669-1692
    • Jiang, J.1    Rao, J.S.2    Gu, Z.3    Nguyen, T.4
  • 18
    • 16844366786 scopus 로고    scopus 로고
    • Genome-wide strategies for detecting multiple loci that influence complex diseases
    • Marchini, J., Donnelly, P. and Cardon, L. R. (2005). Genome-wide strategies for detecting multiple loci that influence complex diseases. Nature Genetics 37, 413-417.
    • (2005) Nature Genetics , vol.37 , pp. 413-417
    • Marchini, J.1    Donnelly, P.2    Cardon, L.R.3
  • 20
    • 34547849507 scopus 로고    scopus 로고
    • L1-regularization path algorithm for generalized linear models
    • Park, M. Y. and Hastie, T. (2007). L1-regularization path algorithm for generalized linear models. J. Roy. Statist. Soc. Ser. B 69, 659-677.
    • (2007) J. Roy. Statist. Soc. Ser. B , vol.69 , pp. 659-677
    • Park, M.Y.1    Hastie, T.2
  • 21
    • 79951480123 scopus 로고    scopus 로고
    • R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria
    • R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
    • (2010) R: A Language and Environment for Statistical Computing
  • 22
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6, 461-464.
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 23
    • 23344452415 scopus 로고    scopus 로고
    • Model selection in irregular problems: Application to mapping quantitative trait loci
    • Siegmund, D. (2004). Model selection in irregular problems: Application to mapping quantitative trait loci. Biometrika 91, 785-80.
    • (2004) Biometrika , vol.91 , pp. 785-80
    • Siegmund, D.1
  • 25
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions (with discussion)
    • Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions (with discussion). J. Roy. Statist. Soc. Ser. B 39, 111-147.
    • (1974) J. Roy. Statist. Soc. Ser. B , vol.39 , pp. 111-147
    • Stone, M.1
  • 26
    • 84969213492 scopus 로고    scopus 로고
    • Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls
    • TheWellcome Trust Case-Control Consortium.
    • TheWellcome Trust Case-Control Consortium. (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661-678.
    • (2007) Nature , vol.447 , pp. 661-678
  • 27
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58, 267-288.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 29
    • 34548536572 scopus 로고    scopus 로고
    • Tuning parameter selectors for the smoothly clipped absolute deviation method
    • DOI 10.1093/biomet/asm053
    • Wang, H., Li, R. and Tsai, C.-L. (2007). Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika 94, 553-568. (Pubitemid 47384250)
    • (2007) Biometrika , vol.94 , Issue.3 , pp. 553-568
    • Wang, H.1    Li, R.2    Tsai, C.-L.3
  • 30
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the LASSO selection in highdimensional linear regression
    • Zhang, C. H. and Huang, J. (2008). The sparsity and bias of the LASSO selection in highdimensional linear regression. Ann. Statist. 36, 1567-1594.
    • (2008) Ann. Statist. , vol.36 , pp. 1567-1594
    • Zhang, C.H.1    Huang, J.2
  • 31
    • 77952580367 scopus 로고    scopus 로고
    • Regularization parameter selections via generlized information criterions
    • Zhang, Y., Li, R. and Tsai, C.-L. (2010). Regularization parameter selections via generlized information criterions. J. Amer. Statist. Assoc. 105, 312-323.
    • (2010) J. Amer. Statist. Assoc. , vol.105 , pp. 312-323
    • Zhang, Y.1    Li, R.2    Tsai, C.-L.3
  • 32
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. J. Roy. Statist. Soc. Ser. B 67, 301-32.
    • (2005) J. Roy. Statist. Soc. Ser. B , vol.67 , pp. 301-32
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.