-
1
-
-
78149344250
-
The application of decision tree in Chinese email classification
-
Qingdao, China, July
-
H. Chen, Y.Zhan, and Y. Li. The application of decision tree in Chinese email classification. In International Conference on Machine Learning and Cybernetics, pp. 305-308, Qingdao, China, July 2010.
-
(2010)
International Conference on Machine Learning and Cybernetics
, pp. 305-308
-
-
Chen, H.1
Zhan, Y.2
Li, Y.3
-
2
-
-
79951753210
-
A graph- based approach for multi-folder email classification
-
Sydney, Australia, December
-
S. Chakravarthy, A. Venkatachalam, and A. Telang. A Graph- Based Approach for Multi-folder Email Classification. In IEEE International Conference on Data Mining, pp. 78-87, Sydney, Australia, December 2010.
-
(2010)
IEEE International Conference on Data Mining
, pp. 78-87
-
-
Chakravarthy, S.1
Venkatachalam, A.2
Telang, A.3
-
3
-
-
77954404304
-
Real-time traffic classification based on statistical and payload content features
-
Wuhan, China, May
-
F. Dehghani, N. Movahhedinia, M.R. Khayyambashi, and S. Kianian. Real-Time Traffic Classification Based on Statistical and Payload Content Features. In International Workshop on Intelligent Systems and Applications, pp. 1-4, Wuhan, China, May 2010.
-
(2010)
International Workshop on Intelligent Systems and Applications
, pp. 1-4
-
-
Dehghani, F.1
Movahhedinia, N.2
Khayyambashi, M.R.3
Kianian, S.4
-
4
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
Bled, Slovenia, June
-
T. Joachims. Transductive Inference for Text Classification Using Support Vector Machines. In International Conference on Machine Learning, pp. 200-209, Bled, Slovenia, June 1999.
-
(1999)
International Conference on Machine Learning
, pp. 200-209
-
-
Joachims, T.1
-
5
-
-
0033886806
-
Text classification from labeled and unlabeled documents using em
-
K. Nigam, A.K. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled and unlabeled documents using EM. Machine Learning - Special issue on information retrieval, 39(2-3): 103-134, 2000.
-
(2000)
Machine Learning - Special Issue on Information Retrieval
, vol.39
, Issue.2-3
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.K.2
Thrun, S.3
Mitchell, T.4
-
7
-
-
63449090301
-
Learning on the border: Active learning in imbalanced data classification
-
Lisboa, Portugal, November
-
S. Ertekin, J. Huang, L. Bottou, and L. Giles. Learning on the Border: Active Learning in Imbalanced Data Classification. In ACM Conference on Information and Knowledge Management, pp. 127-136, Lisboa, Portugal, November 2007.
-
(2007)
ACM Conference on Information and Knowledge Management
, pp. 127-136
-
-
Ertekin, S.1
Huang, J.2
Bottou, L.3
Giles, L.4
-
9
-
-
33749242994
-
Agnostic active learning
-
Pennsylvania, USA, June
-
M.F. Balcan, A. Beygelzimer, and J. Langford. Agnostic active learning. In International Conference on Machine Learning, pp. 65-72, Pennsylvania, USA, June 2006.
-
(2006)
International Conference on Machine Learning
, pp. 65-72
-
-
Balcan, M.F.1
Beygelzimer, A.2
Langford, J.3
-
10
-
-
34547983474
-
A bound on the label complexity of agnostic active learning
-
Oregon, USA, June
-
S. Hanneke. A bound on the Label Complexity of Agnostic Active Learning. In International Conference on Machine Learning, pp. 353-360, Oregon, USA, June 2007.
-
(2007)
International Conference on Machine Learning
, pp. 353-360
-
-
Hanneke, S.1
-
12
-
-
71149101362
-
Importance weighted active learning
-
Montreal, Canada, June
-
A. Beygelzimer, S. Dasgupta, and J. Langford. Importance weighted active learning. In International Conference on Machine Learning, pp. 49-56, Montreal, Canada, June 2009.
-
(2009)
International Conference on Machine Learning
, pp. 49-56
-
-
Beygelzimer, A.1
Dasgupta, S.2
Langford, J.3
-
13
-
-
85161966389
-
Agnostic active learning without constraints
-
Vancouver, Canada, December
-
A. Beygelzimer, D. Hsu, J. Langford, and T. Zhang. Agnostic Active Learning without Constraints. In Neural Information Processing Systems, Vancouver, Canada, December 2010.
-
(2010)
Neural Information Processing Systems
-
-
Beygelzimer, A.1
Hsu, D.2
Langford, J.3
Zhang, T.4
-
15
-
-
33947681316
-
ML-KNN: A lazy learning approach to multi-label learning
-
M.L. Zhang and Z.H. Zhou. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7): 2038-2048, 2007.
-
(2007)
Pattern Recognition
, vol.40
, Issue.7
, pp. 2038-2048
-
-
Zhang, M.L.1
Zhou, Z.H.2
-
16
-
-
34547618445
-
Multi-evidence, multi-criteria, lazy associative document classification
-
VA, USA, November
-
A. Veloso, W. Meira, Jr., M. Cristo, M. Goncalves, and M. Zaki. Multi-evidence, multi-criteria, lazy associative document classification. In ACM International Conference on Information and knowledge management, pp. 218-227, VA, USA, November 2006.
-
(2006)
ACM International Conference on Information and Knowledge Management
, pp. 218-227
-
-
Veloso, A.1
Meira Jr., W.2
Cristo, M.3
Goncalves, M.4
Zaki, M.5
-
17
-
-
34547673383
-
Cost-sensitive boosting for classification of imbalanced data
-
Y. Sun, M.S. Kamel, A.K.C. Wong, and Y. Wang. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition, 40(12): 3358-3378, 2007.
-
(2007)
Pattern Recognition
, vol.40
, Issue.12
, pp. 3358-3378
-
-
Sun, Y.1
Kamel, M.S.2
Wong, A.K.C.3
Wang, Y.4
-
20
-
-
0034825091
-
Supervised versus unsupervised binary-learning by feedforward neural networks
-
N. Japkowicz. Supervised versus unsupervised binary-learning by feedforward neural networks. Machine Learning, 42(1-2): 97-122, 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.1-2
, pp. 97-122
-
-
Japkowicz, N.1
-
21
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
N.V. Chawla, K.W. Bowyer, L.O. Hall, and W.P. Kegelmeyer. SMOTE: synthetic minority over-sampling technique. Artificial Intelligence Research, 16(1): 321-357, 2002.
-
(2002)
Artificial Intelligence Research
, vol.16
, Issue.1
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
22
-
-
0001972236
-
Addressing the curse of imbalanced training sets: One-sided selection
-
Tennessee, USA, July
-
M. Kubat and S. Matwin. Addressing the Curse of Imbalanced Training Sets: One-Sided Selection. In International Conference on Machine Learning, pp. 179-186, Tennessee, USA, July 1997.
-
(1997)
International Conference on Machine Learning
, pp. 179-186
-
-
Kubat, M.1
Matwin, S.2
-
23
-
-
79951766273
-
Rare category characterization
-
Sydney, Australia, December
-
J. He, H. Tong, and J. Carbonell. Rare Category Characterization. In IEEE International Conference on Data Mining, pp. 226-235, Sydney, Australia, December 2010.
-
(2010)
IEEE International Conference on Data Mining
, pp. 226-235
-
-
He, J.1
Tong, H.2
Carbonell, J.3
-
24
-
-
79951730506
-
Exploiting local data uncertainty to boost global outlier detection
-
Sydney, Australia, December
-
B. Liu, J. Yin, Y.S. Xiao, L.B. Cao, and P.S. Yu. Exploiting Local Data Uncertainty to Boost Global Outlier Detection. In IEEE International Conference on Data Mining, pp. 304-313, Sydney, Australia, December 2010.
-
(2010)
IEEE International Conference on Data Mining
, pp. 304-313
-
-
Liu, B.1
Yin, J.2
Xiao, Y.S.3
Cao, L.B.4
Yu, P.S.5
-
25
-
-
61549114384
-
SVMs modeling for highly imbalanced classification
-
Y. Tang, Y.Q. Zhang, N.V. Chawla, and S. Krasser. SVMs Modeling for Highly Imbalanced Classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics- Special issue on human computing, 39(1): 281-288, 2009.
-
(2009)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics- Special Issue on Human Computing
, vol.39
, Issue.1
, pp. 281-288
-
-
Tang, Y.1
Zhang, Y.Q.2
Chawla, N.V.3
Krasser, S.4
-
27
-
-
49749141052
-
Lazy bagging for classifying imbalanced data
-
Omaha NE, USA, October
-
X. Zhu. Lazy Bagging for Classifying Imbalanced Data. In IEEE International Conference on Data Mining, pp. 763-768, Omaha NE, USA, October 2007.
-
(2007)
IEEE International Conference on Data Mining
, pp. 763-768
-
-
Zhu, X.1
-
28
-
-
79951739637
-
Finding local anomalies in very high dimensional space
-
Sydney, Australia, December
-
T.D. Vries, S. Chawla, and M.E. Houle. Finding Local Anomalies in Very High Dimensional Space. In IEEE International Conference on Data Mining, pp. 128-137, Sydney, Australia, December 2010.
-
(2010)
IEEE International Conference on Data Mining
, pp. 128-137
-
-
Vries, T.D.1
Chawla, S.2
Houle, M.E.3
-
29
-
-
26944500557
-
Data dependent concentration bounds for sequential prediction algorithms
-
T. Zhang. Data dependent concentration bounds for sequential prediction algorithms. In Learning Theory, Lecture Notes in Computer Science, pp. 173-187, 2005.
-
(2005)
Learning Theory, Lecture Notes in Computer Science
, pp. 173-187
-
-
Zhang, T.1
|