메뉴 건너뛰기




Volumn , Issue , 2011, Pages 405-412

Certainty-enhanced active learning for improving imbalanced data classification

Author keywords

Active learning; Certainty enhanced neighborhood; Imbalanced data classification; Lazy learning; Streaming datasets

Indexed keywords

ACTIVE LEARNING; ACTIVE-LEARNING ALGORITHM; CERTAINTY- ENHANCED NEIGHBORHOOD; DATA SETS; ERROR MINIMIZATION; IMBALANCED DATA; LAZY LEARNING; REAL-WORLD DATASETS; UNLABELED SAMPLES;

EID: 84863182737     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDMW.2011.43     Document Type: Conference Paper
Times cited : (12)

References (30)
  • 4
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Bled, Slovenia, June
    • T. Joachims. Transductive Inference for Text Classification Using Support Vector Machines. In International Conference on Machine Learning, pp. 200-209, Bled, Slovenia, June 1999.
    • (1999) International Conference on Machine Learning , pp. 200-209
    • Joachims, T.1
  • 10
    • 34547983474 scopus 로고    scopus 로고
    • A bound on the label complexity of agnostic active learning
    • Oregon, USA, June
    • S. Hanneke. A bound on the Label Complexity of Agnostic Active Learning. In International Conference on Machine Learning, pp. 353-360, Oregon, USA, June 2007.
    • (2007) International Conference on Machine Learning , pp. 353-360
    • Hanneke, S.1
  • 15
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • M.L. Zhang and Z.H. Zhou. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7): 2038-2048, 2007.
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.L.1    Zhou, Z.H.2
  • 17
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Y. Sun, M.S. Kamel, A.K.C. Wong, and Y. Wang. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition, 40(12): 3358-3378, 2007.
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.C.3    Wang, Y.4
  • 19
    • 85096855936 scopus 로고    scopus 로고
    • One-class svms for document classification
    • L.M. Manevitz and M. Yousef. One-class svms for document classification. Machine Learning Research, 2:139-154, 2002.
    • (2002) Machine Learning Research , vol.2 , pp. 139-154
    • Manevitz, L.M.1    Yousef, M.2
  • 20
    • 0034825091 scopus 로고    scopus 로고
    • Supervised versus unsupervised binary-learning by feedforward neural networks
    • N. Japkowicz. Supervised versus unsupervised binary-learning by feedforward neural networks. Machine Learning, 42(1-2): 97-122, 2001.
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 97-122
    • Japkowicz, N.1
  • 22
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: One-sided selection
    • Tennessee, USA, July
    • M. Kubat and S. Matwin. Addressing the Curse of Imbalanced Training Sets: One-Sided Selection. In International Conference on Machine Learning, pp. 179-186, Tennessee, USA, July 1997.
    • (1997) International Conference on Machine Learning , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 24
    • 79951730506 scopus 로고    scopus 로고
    • Exploiting local data uncertainty to boost global outlier detection
    • Sydney, Australia, December
    • B. Liu, J. Yin, Y.S. Xiao, L.B. Cao, and P.S. Yu. Exploiting Local Data Uncertainty to Boost Global Outlier Detection. In IEEE International Conference on Data Mining, pp. 304-313, Sydney, Australia, December 2010.
    • (2010) IEEE International Conference on Data Mining , pp. 304-313
    • Liu, B.1    Yin, J.2    Xiao, Y.S.3    Cao, L.B.4    Yu, P.S.5
  • 27
    • 49749141052 scopus 로고    scopus 로고
    • Lazy bagging for classifying imbalanced data
    • Omaha NE, USA, October
    • X. Zhu. Lazy Bagging for Classifying Imbalanced Data. In IEEE International Conference on Data Mining, pp. 763-768, Omaha NE, USA, October 2007.
    • (2007) IEEE International Conference on Data Mining , pp. 763-768
    • Zhu, X.1
  • 28
    • 79951739637 scopus 로고    scopus 로고
    • Finding local anomalies in very high dimensional space
    • Sydney, Australia, December
    • T.D. Vries, S. Chawla, and M.E. Houle. Finding Local Anomalies in Very High Dimensional Space. In IEEE International Conference on Data Mining, pp. 128-137, Sydney, Australia, December 2010.
    • (2010) IEEE International Conference on Data Mining , pp. 128-137
    • Vries, T.D.1    Chawla, S.2    Houle, M.E.3
  • 29
    • 26944500557 scopus 로고    scopus 로고
    • Data dependent concentration bounds for sequential prediction algorithms
    • T. Zhang. Data dependent concentration bounds for sequential prediction algorithms. In Learning Theory, Lecture Notes in Computer Science, pp. 173-187, 2005.
    • (2005) Learning Theory, Lecture Notes in Computer Science , pp. 173-187
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.