메뉴 건너뛰기




Volumn , Issue , 2011, Pages 202-207

Reconstruction of large-scale gene regulatory networks using Bayesian model averaging

Author keywords

Bayesian model averaging; Integration; Large scale gene regulatory networks

Indexed keywords

BAYESIAN APPROACHES; BAYESIAN MODEL AVERAGING; BIOLOGICAL DATA; BIOLOGICAL PROCESS; COMPUTATION TIME; DEGREE DISTRIBUTIONS; DIFFERENTIALLY EXPRESSED GENE; GAUSSIANS; GENE EXPRESSION DATA; GENE REGULATORY NETWORKS; GIBBS DISTRIBUTION; GRAPHICAL MODEL; INTEGRATION; INTEGRATION TECHNIQUES; LARGE-SCALE GENE REGULATORY NETWORKS; LARGE-SCALE NETWORK; LIVING SYSTEMS; MULTIPLE SOURCE; REGRESSION MODEL; SIMULATION STUDIES; SYSTEMS BIOLOGY; TUMOR SAMPLES;

EID: 84862958750     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BIBM.2011.95     Document Type: Conference Paper
Times cited : (7)

References (34)
  • 2
    • 58549119985 scopus 로고    scopus 로고
    • The evolution of hierarchical gene regulatory networks
    • D. Erwin and E. Davidson, "The evolution of hierarchical gene regulatory networks," Nature Reviews Genetics, vol. 10, no. 2, pp. 141-148, 2009.
    • (2009) Nature Reviews Genetics , vol.10 , Issue.2 , pp. 141-148
    • Erwin, D.1    Davidson, E.2
  • 4
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • M. Zou and S. Conzen, "A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data," Bioinformatics, vol. 21, no. 1, p. 71, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 71
    • Zou, M.1    Conzen, S.2
  • 5
    • 34248572623 scopus 로고    scopus 로고
    • Boolean dynamics of genetic regulatory networks inferred from microarray time series data
    • S. Martin, Z. Zhang, A. Martino, and J. Faulon, "Boolean dynamics of genetic regulatory networks inferred from microarray time series data," Bioinformatics, vol. 23, no. 7, p. 866, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.7 , pp. 866
    • Martin, S.1    Zhang, Z.2    Martino, A.3    Faulon, J.4
  • 6
    • 34249862287 scopus 로고    scopus 로고
    • Learning causal networks from systems biology time course data: An effective model selection procedure for the vector autoregressive process
    • R. Opgen-Rhein and K. Strimmer, "Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process,"BMC bioinformatics, vol. 8, no. Suppl 2, p. S3, 2007.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 2
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 7
    • 41349101972 scopus 로고    scopus 로고
    • Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models
    • O. Hirose, R. Yoshida, S. Imoto, R. Yamaguchi, T. Higuchi, D. Charnock-Jones et al., "Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models," Bioinformatics, vol. 24, no. 7, p. 932, 2008.
    • (2008) Bioinformatics , vol.24 , Issue.7 , pp. 932
    • Hirose, O.1    Yoshida, R.2    Imoto, S.3    Yamaguchi, R.4    Higuchi, T.5    Charnock-Jones, D.6
  • 8
    • 33947305781 scopus 로고    scopus 로고
    • Aracne: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. Favera, and A. Califano, "Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context," BMC bioinformatics, vol. 7, no. Suppl 1, p. S7, 2006.
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL. 1
    • Margolin, A.1    Nemenman, I.2    Basso, K.3    Wiggins, C.4    Stolovitzky, G.5    Favera, R.6    Califano, A.7
  • 12
    • 27644508196 scopus 로고    scopus 로고
    • Constructing and analyzing a large-scale gene-to-gene regulatory network-lasso-constrained inference and biological validation
    • M. Gustafsson, M. Hornquist, and A. Lombardi, "Constructing and analyzing a large-scale gene-to-gene regulatory network-lasso-constrained inference and biological validation,"IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), vol. 2, no. 3, pp. 254-261, 2005.
    • (2005) IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) , vol.2 , Issue.3 , pp. 254-261
    • Gustafsson, M.1    Hornquist, M.2    Lombardi, A.3
  • 14
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • J. Friedman, T. Hastie, and R. Tibshirani, "Regularization paths for generalized linear models via coordinate descent,"Journal of Statistical Software, vol. 33, no. 1, p. 1, 2010.
    • (2010) Journal of Statistical Software , vol.33 , Issue.1 , pp. 1
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 15
    • 34848903220 scopus 로고    scopus 로고
    • From correlation to causation networks: A simple approximate learning algorithm and its application to high-dimensional plant gene expression data
    • R. Opgen-Rhein and K. Strimmer, "From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data," BMC Systems Biology, vol. 1, no. 1, p. 37, 2007.
    • (2007) BMC Systems Biology , vol.1 , Issue.1 , pp. 37
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 16
    • 27844521293 scopus 로고    scopus 로고
    • A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
    • J. Schfer and K. Strimmer, "A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics," Statistical applications in genetics and molecular biology, vol. 4, no. 1, p. 32, 2005.
    • (2005) Statistical Applications in Genetics and Molecular Biology , vol.4 , Issue.1 , pp. 32
    • Schfer, J.1    Strimmer, K.2
  • 17
    • 34547844096 scopus 로고    scopus 로고
    • Comparing association network algorithms for reverse engineering of largescale gene regulatory networks: Synthetic versus real data
    • N. Soranzo, G. Bianconi, and C. Altafini, "Comparing association network algorithms for reverse engineering of largescale gene regulatory networks: synthetic versus real data,"Bioinformatics, vol. 23, no. 13, p. 1640, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.13 , pp. 1640
    • Soranzo, N.1    Bianconi, G.2    Altafini, C.3
  • 18
    • 45149106353 scopus 로고    scopus 로고
    • Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks
    • DOI 10.1038/ng.167, PII NG167
    • J. Zhu, B. Zhang, E. Smith, B. Drees, R. Brem, L. Kruglyak, R. Bumgarner, and E. Schadt, "Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks," Nature genetics, vol. 40, no. 7, pp. 854-861, 2008. (Pubitemid 351913653)
    • (2008) Nature Genetics , vol.40 , Issue.7 , pp. 854-861
    • Zhu, J.1    Zhang, B.2    Smith, E.N.3    Drees, B.4    Brem, R.B.5    Kruglyak, L.6    Bumgarner, R.E.7    Schadt, E.E.8
  • 19
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: Data integration in dynamic models - A review
    • M. Hecker, S. Lambeck, S. Toepfer, E. Van Someren, and R. Guthke, "Gene regulatory network inference: Data integration in dynamic models - A review," Biosystems, vol. 96, no. 1, pp. 86-103, 2009.
    • (2009) Biosystems , vol.96 , Issue.1 , pp. 86-103
    • Hecker, M.1    Lambeck, S.2    Toepfer, S.3    Van Someren, E.4    Guthke, R.5
  • 20
    • 2442718023 scopus 로고    scopus 로고
    • Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks
    • World Scientific Pub Co Inc
    • N. Nariai, S. Kim, S. Imoto, and S. Miyano, "Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks," in Pacific Symposium on Biocomputing 2004: Hawaii, USA, 6-10 January 2004. World Scientific Pub Co Inc, 2003, p. 336.
    • (2003) Pacific Symposium on Biocomputing 2004: Hawaii, USA, 6-10 January 2004 , pp. 336
    • Nariai, N.1    Kim, S.2    Imoto, S.3    Miyano, S.4
  • 21
    • 15944361900 scopus 로고    scopus 로고
    • Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
    • Citeseer
    • A. Bernard and A. Hartemink, "Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data," in Pac Symp Biocomput, vol. 10. Citeseer, 2005, pp. 459-470.
    • (2005) Pac Symp Biocomput , vol.10 , pp. 459-470
    • Bernard, A.1    Hartemink, A.2
  • 22
    • 0015634063 scopus 로고
    • A unified approach to the evaluation of a class of replacement algorithms
    • E. Gelenbe, "A unified approach to the evaluation of a class of replacement algorithms," Computers, IEEE Transactions on, vol. 100, no. 6, pp. 611-618, 1973.
    • (1973) Computers, IEEE Transactions on , vol.100 , Issue.6 , pp. 611-618
    • Gelenbe, E.1
  • 23
    • 34548854836 scopus 로고    scopus 로고
    • Steady-state solution of probabilistic gene regulatory networks
    • E. G elenbe, "Steady-state solution of probabilistic gene regulatory networks," Physical Review E, vol. 76, no. 3, p. 031903, 2007.
    • (2007) Physical Review e , vol.76 , Issue.3 , pp. 031903
    • Gelenbe, E.1
  • 25
    • 68349096073 scopus 로고    scopus 로고
    • Inference of Large Scale Gene Regulatory Networks Using Regressionbased Approach
    • H. Kim, J. Lee, and T. Park, "Inference of Large Scale Gene Regulatory Networks Using Regressionbased Approach,"Journal of Bioinformatics and Computational Biology, vol. 7, no. 4, pp. 717-35, 2009.
    • (2009) Journal of Bioinformatics and Computational Biology , vol.7 , Issue.4 , pp. 717-735
    • Kim, H.1    Lee, J.2    Park, T.3
  • 26
    • 0001201909 scopus 로고
    • Bayesian model selection in social research
    • A. Raftery, "Bayesian model selection in social research, "Sociological methodology, vol. 25, pp. 111-163, 1995.
    • (1995) Sociological Methodology , vol.25 , pp. 111-163
    • Raftery, A.1
  • 27
    • 0036372453 scopus 로고    scopus 로고
    • Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression
    • S. Imoto, T. Goto, and S. Miyano, "Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression," in Pacific Symposium on Biocomputing, vol. 7, 2002, pp. 175-186.
    • (2002) Pacific Symposium on Biocomputing , vol.7 , pp. 175-186
    • Imoto, S.1    Goto, T.2    Miyano, S.3
  • 28
    • 46049101810 scopus 로고    scopus 로고
    • Gene regulatory network reconstruction by bayesian integration of prior knowledge and/or different experimental conditions
    • DOI 10.1142/S0219720008003539, PII S0219720008003539
    • A. Werhli and D. Husmeier, "Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions," Journal of bioinformatics and computational biology, vol. 6, no. 3, pp. 543-572, 2008. (Pubitemid 351895193)
    • (2008) Journal of Bioinformatics and Computational Biology , vol.6 , Issue.3 , pp. 543-572
    • Werhli, A.V.1    Husmeier, D.2
  • 29
    • 77950652940 scopus 로고    scopus 로고
    • Integrating multiple evidence sources to predict transcription factor binding in the human genome
    • J. Ernst, H. Plasterer, I. Simon, and Z. Bar-Joseph, "Integrating multiple evidence sources to predict transcription factor binding in the human genome," Genome research, vol. 20, no. 4, p. 526, 2010.
    • (2010) Genome Research , vol.20 , Issue.4 , pp. 526
    • Ernst, J.1    Plasterer, H.2    Simon, I.3    Bar-Joseph, Z.4
  • 30
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using Occam's window
    • D. Madigan and A. Raftery, "Model selection and accounting for model uncertainty in graphical models using Occam's window," Journal of the American Statistical Association, vol. 89, no. 428, pp. 1535-1546, 1994.
    • (1994) Journal of the American Statistical Association , vol.89 , Issue.428 , pp. 1535-1546
    • Madigan, D.1    Raftery, A.2
  • 31
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: Understanding the cell's functional organization
    • DOI 10.1038/nrg1272
    • A. Barabási and Z. Oltvai, "Network biology: understanding the cell's functional organization," Nature Reviews Genetics, vol. 5, no. 2, pp. 101-113, 2004. (Pubitemid 38160277)
    • (2004) Nature Reviews Genetics , vol.5 , Issue.2 , pp. 101-113
    • Barabasi, A.-L.1    Oltvai, Z.N.2
  • 34
    • 33847683190 scopus 로고    scopus 로고
    • GOstat: Find statistically over-represented Gene Ontologies within a group of genes
    • T. Beissbarth and T. Speed, "GOstat: find statistically over-represented Gene Ontologies within a group of genes," Bioinformatics, p. 881, 2004.
    • (2004) Bioinformatics , pp. 881
    • Beissbarth, T.1    Speed, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.