-
1
-
-
75149195336
-
The transcriptional network for mesenchymal transformation of brain tumours
-
M. Carro, W. Lim, M. Alvarez, R. Bollo, X. Zhao, E. Snyder, E. Sulman, S. Anne, F. Doetsch, H. Colman et al., "The transcriptional network for mesenchymal transformation of brain tumours," Nature, vol. 463, no. 7279, pp. 318-325, 2009.
-
(2009)
Nature
, vol.463
, Issue.7279
, pp. 318-325
-
-
Carro, M.1
Lim, W.2
Alvarez, M.3
Bollo, R.4
Zhao, X.5
Snyder, E.6
Sulman, E.7
Anne, S.8
Doetsch, F.9
Colman, H.10
-
2
-
-
58549119985
-
The evolution of hierarchical gene regulatory networks
-
D. Erwin and E. Davidson, "The evolution of hierarchical gene regulatory networks," Nature Reviews Genetics, vol. 10, no. 2, pp. 141-148, 2009.
-
(2009)
Nature Reviews Genetics
, vol.10
, Issue.2
, pp. 141-148
-
-
Erwin, D.1
Davidson, E.2
-
3
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
N. Friedman, M. Linial, I. Nachman, and D. Pe'er, "Using Bayesian networks to analyze expression data," Journal of computational biology, vol. 7, no. 3-4, pp. 601-620, 2000.
-
(2000)
Journal of Computational Biology
, vol.7
, Issue.3-4
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'Er, D.4
-
4
-
-
12744261506
-
A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
-
M. Zou and S. Conzen, "A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data," Bioinformatics, vol. 21, no. 1, p. 71, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.1
, pp. 71
-
-
Zou, M.1
Conzen, S.2
-
5
-
-
34248572623
-
Boolean dynamics of genetic regulatory networks inferred from microarray time series data
-
S. Martin, Z. Zhang, A. Martino, and J. Faulon, "Boolean dynamics of genetic regulatory networks inferred from microarray time series data," Bioinformatics, vol. 23, no. 7, p. 866, 2007.
-
(2007)
Bioinformatics
, vol.23
, Issue.7
, pp. 866
-
-
Martin, S.1
Zhang, Z.2
Martino, A.3
Faulon, J.4
-
6
-
-
34249862287
-
Learning causal networks from systems biology time course data: An effective model selection procedure for the vector autoregressive process
-
R. Opgen-Rhein and K. Strimmer, "Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process,"BMC bioinformatics, vol. 8, no. Suppl 2, p. S3, 2007.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.SUPPL. 2
-
-
Opgen-Rhein, R.1
Strimmer, K.2
-
7
-
-
41349101972
-
Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models
-
O. Hirose, R. Yoshida, S. Imoto, R. Yamaguchi, T. Higuchi, D. Charnock-Jones et al., "Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models," Bioinformatics, vol. 24, no. 7, p. 932, 2008.
-
(2008)
Bioinformatics
, vol.24
, Issue.7
, pp. 932
-
-
Hirose, O.1
Yoshida, R.2
Imoto, S.3
Yamaguchi, R.4
Higuchi, T.5
Charnock-Jones, D.6
-
8
-
-
33947305781
-
Aracne: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
-
A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. Favera, and A. Califano, "Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context," BMC bioinformatics, vol. 7, no. Suppl 1, p. S7, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.SUPPL. 1
-
-
Margolin, A.1
Nemenman, I.2
Basso, K.3
Wiggins, C.4
Stolovitzky, G.5
Favera, R.6
Califano, A.7
-
9
-
-
77950910419
-
Revealing strengths and weaknesses of methods for gene network inference
-
D. Marbach, R. Prill, T. Schaffter, C. Mattiussi, D. Floreano, and G. Stolovitzky, "Revealing strengths and weaknesses of methods for gene network inference," Proceedings of the National Academy of Sciences, vol. 107, no. 14, p. 6286, 2010.
-
(2010)
Proceedings of the National Academy of Sciences
, vol.107
, Issue.14
, pp. 6286
-
-
Marbach, D.1
Prill, R.2
Schaffter, T.3
Mattiussi, C.4
Floreano, D.5
Stolovitzky, G.6
-
10
-
-
78149284567
-
Parallel information-theory-based construction of genome-wide gene regulatory networks
-
J. Zola, M. Aluru, A. Sarje, and S. Aluru, "Parallel information-theory-based construction of genome-wide gene regulatory networks," IEEE Transactions on Parallel and Distributed Systems, pp. 1721-1733, 2010.
-
(2010)
IEEE Transactions on Parallel and Distributed Systems
, pp. 1721-1733
-
-
Zola, J.1
Aluru, M.2
Sarje, A.3
Aluru, S.4
-
11
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani, "Regression shrinkage and selection via the lasso," Journal of the Royal Statistical Society. Series B (Methodological), vol. 58, no. 1, pp. 267-288, 1996.
-
(1996)
Journal of the Royal Statistical Society. Series B (Methodological)
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
12
-
-
27644508196
-
Constructing and analyzing a large-scale gene-to-gene regulatory network-lasso-constrained inference and biological validation
-
M. Gustafsson, M. Hornquist, and A. Lombardi, "Constructing and analyzing a large-scale gene-to-gene regulatory network-lasso-constrained inference and biological validation,"IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), vol. 2, no. 3, pp. 254-261, 2005.
-
(2005)
IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB)
, vol.2
, Issue.3
, pp. 254-261
-
-
Gustafsson, M.1
Hornquist, M.2
Lombardi, A.3
-
13
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
DOI 10.1111/j.1467-9868.2005.00503.x
-
H. Zou and T. Hastie, "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 67, no. 2, pp. 301-320, 2005. (Pubitemid 40465877)
-
(2005)
Journal of the Royal Statistical Society. Series B: Statistical Methodology
, vol.67
, Issue.2
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
14
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
J. Friedman, T. Hastie, and R. Tibshirani, "Regularization paths for generalized linear models via coordinate descent,"Journal of Statistical Software, vol. 33, no. 1, p. 1, 2010.
-
(2010)
Journal of Statistical Software
, vol.33
, Issue.1
, pp. 1
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
15
-
-
34848903220
-
From correlation to causation networks: A simple approximate learning algorithm and its application to high-dimensional plant gene expression data
-
R. Opgen-Rhein and K. Strimmer, "From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data," BMC Systems Biology, vol. 1, no. 1, p. 37, 2007.
-
(2007)
BMC Systems Biology
, vol.1
, Issue.1
, pp. 37
-
-
Opgen-Rhein, R.1
Strimmer, K.2
-
16
-
-
27844521293
-
A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
-
J. Schfer and K. Strimmer, "A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics," Statistical applications in genetics and molecular biology, vol. 4, no. 1, p. 32, 2005.
-
(2005)
Statistical Applications in Genetics and Molecular Biology
, vol.4
, Issue.1
, pp. 32
-
-
Schfer, J.1
Strimmer, K.2
-
17
-
-
34547844096
-
Comparing association network algorithms for reverse engineering of largescale gene regulatory networks: Synthetic versus real data
-
N. Soranzo, G. Bianconi, and C. Altafini, "Comparing association network algorithms for reverse engineering of largescale gene regulatory networks: synthetic versus real data,"Bioinformatics, vol. 23, no. 13, p. 1640, 2007.
-
(2007)
Bioinformatics
, vol.23
, Issue.13
, pp. 1640
-
-
Soranzo, N.1
Bianconi, G.2
Altafini, C.3
-
18
-
-
45149106353
-
Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks
-
DOI 10.1038/ng.167, PII NG167
-
J. Zhu, B. Zhang, E. Smith, B. Drees, R. Brem, L. Kruglyak, R. Bumgarner, and E. Schadt, "Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks," Nature genetics, vol. 40, no. 7, pp. 854-861, 2008. (Pubitemid 351913653)
-
(2008)
Nature Genetics
, vol.40
, Issue.7
, pp. 854-861
-
-
Zhu, J.1
Zhang, B.2
Smith, E.N.3
Drees, B.4
Brem, R.B.5
Kruglyak, L.6
Bumgarner, R.E.7
Schadt, E.E.8
-
19
-
-
61349180117
-
Gene regulatory network inference: Data integration in dynamic models - A review
-
M. Hecker, S. Lambeck, S. Toepfer, E. Van Someren, and R. Guthke, "Gene regulatory network inference: Data integration in dynamic models - A review," Biosystems, vol. 96, no. 1, pp. 86-103, 2009.
-
(2009)
Biosystems
, vol.96
, Issue.1
, pp. 86-103
-
-
Hecker, M.1
Lambeck, S.2
Toepfer, S.3
Van Someren, E.4
Guthke, R.5
-
20
-
-
2442718023
-
Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks
-
World Scientific Pub Co Inc
-
N. Nariai, S. Kim, S. Imoto, and S. Miyano, "Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks," in Pacific Symposium on Biocomputing 2004: Hawaii, USA, 6-10 January 2004. World Scientific Pub Co Inc, 2003, p. 336.
-
(2003)
Pacific Symposium on Biocomputing 2004: Hawaii, USA, 6-10 January 2004
, pp. 336
-
-
Nariai, N.1
Kim, S.2
Imoto, S.3
Miyano, S.4
-
21
-
-
15944361900
-
Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
-
Citeseer
-
A. Bernard and A. Hartemink, "Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data," in Pac Symp Biocomput, vol. 10. Citeseer, 2005, pp. 459-470.
-
(2005)
Pac Symp Biocomput
, vol.10
, pp. 459-470
-
-
Bernard, A.1
Hartemink, A.2
-
22
-
-
0015634063
-
A unified approach to the evaluation of a class of replacement algorithms
-
E. Gelenbe, "A unified approach to the evaluation of a class of replacement algorithms," Computers, IEEE Transactions on, vol. 100, no. 6, pp. 611-618, 1973.
-
(1973)
Computers, IEEE Transactions on
, vol.100
, Issue.6
, pp. 611-618
-
-
Gelenbe, E.1
-
23
-
-
34548854836
-
Steady-state solution of probabilistic gene regulatory networks
-
E. G elenbe, "Steady-state solution of probabilistic gene regulatory networks," Physical Review E, vol. 76, no. 3, p. 031903, 2007.
-
(2007)
Physical Review e
, vol.76
, Issue.3
, pp. 031903
-
-
Gelenbe, E.1
-
25
-
-
68349096073
-
Inference of Large Scale Gene Regulatory Networks Using Regressionbased Approach
-
H. Kim, J. Lee, and T. Park, "Inference of Large Scale Gene Regulatory Networks Using Regressionbased Approach,"Journal of Bioinformatics and Computational Biology, vol. 7, no. 4, pp. 717-35, 2009.
-
(2009)
Journal of Bioinformatics and Computational Biology
, vol.7
, Issue.4
, pp. 717-735
-
-
Kim, H.1
Lee, J.2
Park, T.3
-
26
-
-
0001201909
-
Bayesian model selection in social research
-
A. Raftery, "Bayesian model selection in social research, "Sociological methodology, vol. 25, pp. 111-163, 1995.
-
(1995)
Sociological Methodology
, vol.25
, pp. 111-163
-
-
Raftery, A.1
-
27
-
-
0036372453
-
Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression
-
S. Imoto, T. Goto, and S. Miyano, "Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression," in Pacific Symposium on Biocomputing, vol. 7, 2002, pp. 175-186.
-
(2002)
Pacific Symposium on Biocomputing
, vol.7
, pp. 175-186
-
-
Imoto, S.1
Goto, T.2
Miyano, S.3
-
28
-
-
46049101810
-
Gene regulatory network reconstruction by bayesian integration of prior knowledge and/or different experimental conditions
-
DOI 10.1142/S0219720008003539, PII S0219720008003539
-
A. Werhli and D. Husmeier, "Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions," Journal of bioinformatics and computational biology, vol. 6, no. 3, pp. 543-572, 2008. (Pubitemid 351895193)
-
(2008)
Journal of Bioinformatics and Computational Biology
, vol.6
, Issue.3
, pp. 543-572
-
-
Werhli, A.V.1
Husmeier, D.2
-
29
-
-
77950652940
-
Integrating multiple evidence sources to predict transcription factor binding in the human genome
-
J. Ernst, H. Plasterer, I. Simon, and Z. Bar-Joseph, "Integrating multiple evidence sources to predict transcription factor binding in the human genome," Genome research, vol. 20, no. 4, p. 526, 2010.
-
(2010)
Genome Research
, vol.20
, Issue.4
, pp. 526
-
-
Ernst, J.1
Plasterer, H.2
Simon, I.3
Bar-Joseph, Z.4
-
30
-
-
84950945692
-
Model selection and accounting for model uncertainty in graphical models using Occam's window
-
D. Madigan and A. Raftery, "Model selection and accounting for model uncertainty in graphical models using Occam's window," Journal of the American Statistical Association, vol. 89, no. 428, pp. 1535-1546, 1994.
-
(1994)
Journal of the American Statistical Association
, vol.89
, Issue.428
, pp. 1535-1546
-
-
Madigan, D.1
Raftery, A.2
-
31
-
-
0742305866
-
Network biology: Understanding the cell's functional organization
-
DOI 10.1038/nrg1272
-
A. Barabási and Z. Oltvai, "Network biology: understanding the cell's functional organization," Nature Reviews Genetics, vol. 5, no. 2, pp. 101-113, 2004. (Pubitemid 38160277)
-
(2004)
Nature Reviews Genetics
, vol.5
, Issue.2
, pp. 101-113
-
-
Barabasi, A.-L.1
Oltvai, Z.N.2
-
32
-
-
33644873184
-
Biogrid: A general repository for interaction datasets
-
C. Stark, B. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers, "Biogrid: a general repository for interaction datasets," Nucleic acids research, vol. 34, no. suppl 1, p. D535, 2006.
-
(2006)
Nucleic Acids Research
, vol.34
, Issue.SUPPL. 1
-
-
Stark, C.1
Breitkreutz, B.2
Reguly, T.3
Boucher, L.4
Breitkreutz, A.5
Tyers, M.6
-
34
-
-
33847683190
-
GOstat: Find statistically over-represented Gene Ontologies within a group of genes
-
T. Beissbarth and T. Speed, "GOstat: find statistically over-represented Gene Ontologies within a group of genes," Bioinformatics, p. 881, 2004.
-
(2004)
Bioinformatics
, pp. 881
-
-
Beissbarth, T.1
Speed, T.2
|