메뉴 건너뛰기




Volumn 52, Issue 6, 2012, Pages 1686-1697

A Bayesian approach to in Silico blood-brain barrier penetration modeling

Author keywords

[No Author keywords available]

Indexed keywords

APPLICATION PROGRAMS; BAYESIAN NETWORKS; BLOOD; DECISION TREES; DRUG PRODUCTS; MOLECULES; SUPPORT VECTOR MACHINES;

EID: 84862890235     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci300124c     Document Type: Article
Times cited : (280)

References (49)
  • 2
    • 12344273726 scopus 로고    scopus 로고
    • The Blood-Brain Barrier: Bottleneck in Brain Drug Development
    • Pardridge, W. M. The Blood-Brain Barrier: Bottleneck in Brain Drug Development NeuroRx 2005, 2, 3-14
    • (2005) NeuroRx , vol.2 , pp. 3-14
    • Pardridge, W.M.1
  • 3
    • 79959879857 scopus 로고    scopus 로고
    • Breaking through the barrier
    • King, A. Breaking through the barrier Chem. World 2011, 8, 36-39
    • (2011) Chem. World , vol.8 , pp. 36-39
    • King, A.1
  • 4
    • 46749152924 scopus 로고    scopus 로고
    • QSAR Modeling of the Blood-Brain Barrier Permeability for Diverse Organic Compounds
    • Zhang, L.; Zhu, H.; Oprea, T.; Golbraikh, A.; Tropsha, A. QSAR Modeling of the Blood-Brain Barrier Permeability for Diverse Organic Compounds Pharm. Res. 2008, 25, 1902-1914
    • (2008) Pharm. Res. , vol.25 , pp. 1902-1914
    • Zhang, L.1    Zhu, H.2    Oprea, T.3    Golbraikh, A.4    Tropsha, A.5
  • 6
    • 84962359573 scopus 로고    scopus 로고
    • High throughput artificial membrane permeability assay for blood-brain barrier
    • Di, L.; Kerns, E. H.; Fan, K.; McConnell, O. J.; Carter, G. T. High throughput artificial membrane permeability assay for blood-brain barrier Eur. J. Med. Chem. 2003, 38, 223-232
    • (2003) Eur. J. Med. Chem. , vol.38 , pp. 223-232
    • Di, L.1    Kerns, E.H.2    Fan, K.3    McConnell, O.J.4    Carter, G.T.5
  • 7
    • 84862846592 scopus 로고    scopus 로고
    • A novel hypothesis of blood-brain barrier (BBB) development and in vitro BBB model: Neural stem cell is the driver of BBB formation and maintenance
    • Lu, J. A novel hypothesis of blood-brain barrier (BBB) development and in vitro BBB model: neural stem cell is the driver of BBB formation and maintenance J. Exp. Integr. Med. 2012, 2, 39-43
    • (2012) J. Exp. Integr. Med. , vol.2 , pp. 39-43
    • Lu, J.1
  • 9
    • 27144435943 scopus 로고    scopus 로고
    • In Silico Predictions of Blood-Brain Barrier Penetration: Considerations to "keep in Mind"
    • Goodwin, J. T.; Clark, D. E. In Silico Predictions of Blood-Brain Barrier Penetration: Considerations to "Keep in Mind" J. Pharmacol. Exp. Ther. 2005, 315, 477-483
    • (2005) J. Pharmacol. Exp. Ther. , vol.315 , pp. 477-483
    • Goodwin, J.T.1    Clark, D.E.2
  • 10
    • 63849244646 scopus 로고    scopus 로고
    • A Turning Point for Blood-Brain Barrier Modeling
    • Ekins, S.; Tropsha, A. A Turning Point For Blood-Brain Barrier Modeling Pharm. Res. 2009, 26, 1283-1284
    • (2009) Pharm. Res. , vol.26 , pp. 1283-1284
    • Ekins, S.1    Tropsha, A.2
  • 11
    • 67650033008 scopus 로고    scopus 로고
    • Characteristics of compounds that cross the blood-brain barrier
    • Banks, W. A. Characteristics of compounds that cross the blood-brain barrier BMC Neurol. 2009, 9 (Suppl 1) S3
    • (2009) BMC Neurol. , vol.9 , Issue.SUPPL. 1 , pp. 3
    • Banks, W.A.1
  • 12
    • 0037130275 scopus 로고    scopus 로고
    • A simple model to predict blood-brain barrier permeation from 3D molecular fields
    • Ooms, F.; Weber, P.; Carrupt, P.-A.; Testa, B. A simple model to predict blood-brain barrier permeation from 3D molecular fields Biochim. Biophys. Acta 2002, 1587, 118-125
    • (2002) Biochim. Biophys. Acta , vol.1587 , pp. 118-125
    • Ooms, F.1    Weber, P.2    Carrupt, P.-A.3    Testa, B.4
  • 13
    • 12244271454 scopus 로고    scopus 로고
    • Predicting CNS Permeability of Drug Molecules: Comparison of Neural Network and Support Vector Machine Algorithms
    • Doniger, S.; Hofmann, T.; Yeh, J. Predicting CNS Permeability of Drug Molecules: Comparison of Neural Network and Support Vector Machine Algorithms J. Comput. Biol. 2000, 9, 849-864
    • (2000) J. Comput. Biol. , vol.9 , pp. 849-864
    • Doniger, S.1    Hofmann, T.2    Yeh, J.3
  • 14
    • 26944502743 scopus 로고    scopus 로고
    • Effect of Selection of Molecular Descriptors on the Prediction of Blood- Brain Barrier Penetrating and Nonpenetrating Agents by Statistical Learning Methods
    • Li, H.; Yap, C. W.; Ung, C. Y.; Xue, Y.; Cao, Z. W.; Chen, Y. Z. Effect of Selection of Molecular Descriptors on the Prediction of Blood- Brain Barrier Penetrating and Nonpenetrating Agents by Statistical Learning Methods J. Chem. Inf. Model. 2005, 45, 1376-1384
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 1376-1384
    • Li, H.1    Yap, C.W.2    Ung, C.Y.3    Xue, Y.4    Cao, Z.W.5    Chen, Y.Z.6
  • 15
    • 0033518275 scopus 로고    scopus 로고
    • Designing Libraries with CNS Activity
    • Ajay; Bemis, G. W.; Murcko, M. A. Designing Libraries with CNS Activity J. Med. Chem. 1999, 42, 4942-4951
    • (1999) J. Med. Chem. , vol.42 , pp. 4942-4951
    • Ajay1    Bemis, G.W.2    Murcko, M.A.3
  • 16
    • 1542426103 scopus 로고    scopus 로고
    • Blood-Brain Barrier Permeation Models: Discriminating between Potential CNS and Non-CNS Drugs Including P-Glycoprotein Substrates
    • Adenot, M.; Lahana, R. Blood-Brain Barrier Permeation Models: Discriminating between Potential CNS and Non-CNS Drugs Including P-Glycoprotein Substrates J. Chem. Inf. Comput. Sci. 2004, 44, 239-248
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 239-248
    • Adenot, M.1    Lahana, R.2
  • 17
    • 0034213636 scopus 로고    scopus 로고
    • Predicting Blood-Brain Barrier Permeation from Three-Dimensional Molecular Structure
    • Crivori, P.; Cruciani, G.; Carrupt, P.-A.; Testa, B. Predicting Blood-Brain Barrier Permeation from Three-Dimensional Molecular Structure J. Med. Chem. 2000, 43, 2204-2216
    • (2000) J. Med. Chem. , vol.43 , pp. 2204-2216
    • Crivori, P.1    Cruciani, G.2    Carrupt, P.-A.3    Testa, B.4
  • 18
    • 0033800498 scopus 로고    scopus 로고
    • VolSurf: A new tool for the pharmacokinetic optimization of lead compounds
    • Cruciani, G.; Pastor, M.; Guba, W. VolSurf: a new tool for the pharmacokinetic optimization of lead compounds Eur. J. Pharm. Sci. 2000, 11 (Supplement 2) S29-S39
    • (2000) Eur. J. Pharm. Sci. , vol.11 , Issue.SUPPL. 2
    • Cruciani, G.1    Pastor, M.2    Guba, W.3
  • 19
    • 0036844787 scopus 로고    scopus 로고
    • Predicting Blood-Brain Barrier Partitioning of Organic Molecules Using Membrane-Interaction QSAR Analysis
    • Iyer, M.; Mishra, R.; Han, Y.; Hopfinger, A. J. Predicting Blood-Brain Barrier Partitioning of Organic Molecules Using Membrane-Interaction QSAR Analysis Pharm. Res. 2002, 19, 1611-1621
    • (2002) Pharm. Res. , vol.19 , pp. 1611-1621
    • Iyer, M.1    Mishra, R.2    Han, Y.3    Hopfinger, A.J.4
  • 20
    • 0345117308 scopus 로고    scopus 로고
    • ADME Evaluation in Drug Discovery. 3. Modeling Blood-Brain Barrier Partitioning Using Simple Molecular Descriptors
    • Hou, T. J.; Xu, X. J. ADME Evaluation in Drug Discovery. 3. Modeling Blood-Brain Barrier Partitioning Using Simple Molecular Descriptors J. Chem. Inf. Comput. Sci. 2003, 43, 2137-2152
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 2137-2152
    • Hou, T.J.1    Xu, X.J.2
  • 21
    • 10044267949 scopus 로고    scopus 로고
    • Constructing Optimum Blood Brain Barrier QSAR Models Using a Combination of 4D-Molecular Similarity Measures and Cluster Analysis
    • Pan, D.; Iyer, M.; Liu, J.; Li, Y.; Hopfinger, A. J. Constructing Optimum Blood Brain Barrier QSAR Models Using a Combination of 4D-Molecular Similarity Measures and Cluster Analysis J. Chem. Inf. Comput. Sci. 2004, 44, 2083-2098
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 2083-2098
    • Pan, D.1    Iyer, M.2    Liu, J.3    Li, Y.4    Hopfinger, A.J.5
  • 22
    • 33749510509 scopus 로고    scopus 로고
    • In Silico Prediction of Blood-Brain Barrier Permeation Using the Calculated Molecular Cross-Sectional Area as Main Parameter
    • PMID: 17125204.
    • Gerebtzoff, G.; Seelig, A. In Silico Prediction of Blood-Brain Barrier Permeation Using the Calculated Molecular Cross-Sectional Area as Main Parameter. J. Chem. Inf. Model. 2006, 46, 2638-2650, PMID: 17125204.
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 2638-2650
    • Gerebtzoff, G.1    Seelig, A.2
  • 24
    • 54949121773 scopus 로고    scopus 로고
    • Artificial Neural Networks in ADMET Modeling: Prediction of Blood-Brain Barrier Permeation
    • Guerra, A.; Páez, J.; Campillo, N. Artificial Neural Networks in ADMET Modeling: Prediction of Blood-Brain Barrier Permeation QSAR Comb. Sci. 2008, 27, 586-594
    • (2008) QSAR Comb. Sci. , vol.27 , pp. 586-594
    • Guerra, A.1    Páez, J.2    Campillo, N.3
  • 25
    • 46749128531 scopus 로고    scopus 로고
    • New Predictive Models for Blood-Brain Barrier Permeability of Drug-like Molecules
    • Kortagere, S.; Chekmarev, D.; Welsh, W.; Ekins, S. New Predictive Models for Blood-Brain Barrier Permeability of Drug-like Molecules Pharm. Res. 2008, 25, 1836-1845
    • (2008) Pharm. Res. , vol.25 , pp. 1836-1845
    • Kortagere, S.1    Chekmarev, D.2    Welsh, W.3    Ekins, S.4
  • 26
    • 70449389960 scopus 로고    scopus 로고
    • Classification of Blood-Brain Barrier Permeation by Kohonen's Self-Organizing Neural Network (KohNN) and Support Vector Machine (SVM)
    • Wang, Z.; Yan, A.; Yuan, Q. Classification of Blood-Brain Barrier Permeation by Kohonen's Self-Organizing Neural Network (KohNN) and Support Vector Machine (SVM) QSAR Comb. Sci. 2009, 28, 989-994
    • (2009) QSAR Comb. Sci. , vol.28 , pp. 989-994
    • Wang, Z.1    Yan, A.2    Yuan, Q.3
  • 27
    • 77954058432 scopus 로고    scopus 로고
    • Insights for Predicting Blood-Brain Barrier Penetration of CNS Targeted Molecules Using QSPR Approaches
    • Fan, Y.; Unwalla, R.; Denny, R. A.; Di, L.; Kerns, E. H.; Diller, D. J.; Humblet, C. Insights for Predicting Blood-Brain Barrier Penetration of CNS Targeted Molecules Using QSPR Approaches J. Chem. Inf. Model. 2010, 50, 1123-1133
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1123-1133
    • Fan, Y.1    Unwalla, R.2    Denny, R.A.3    Di, L.4    Kerns, E.H.5    Diller, D.J.6    Humblet, C.7
  • 28
    • 84855190244 scopus 로고    scopus 로고
    • Qualitative prediction of blood-brain barrier permeability on a large and refined dataset
    • Muehlbacher, M.; Spitzer, G.; Liedl, K.; Kornhuber, J. Qualitative prediction of blood-brain barrier permeability on a large and refined dataset J. Comput.-Aided Mol. Des. 2011, 25, 1095-1106
    • (2011) J. Comput.-Aided Mol. Des. , vol.25 , pp. 1095-1106
    • Muehlbacher, M.1    Spitzer, G.2    Liedl, K.3    Kornhuber, J.4
  • 29
    • 33845784758 scopus 로고    scopus 로고
    • Blood-brain barrier delivery
    • Pardridge, W. M. Blood-brain barrier delivery Drug Discovery Today 2007, 12, 54-61
    • (2007) Drug Discovery Today , vol.12 , pp. 54-61
    • Pardridge, W.M.1
  • 30
    • 67650088429 scopus 로고    scopus 로고
    • ADDME - Avoiding Drug Development Mistakes Early: Central nervous system drug discovery perspective
    • Tsaioun, K.; Bottlaender, M.; Mabondzo, A. ADDME-Avoiding Drug Development Mistakes Early: central nervous system drug discovery perspective BMC Neurol. 2009, 9 (Suppl 1) S1
    • (2009) BMC Neurol. , vol.9 , Issue.SUPPL. 1 , pp. 1
    • Tsaioun, K.1    Bottlaender, M.2    Mabondzo, A.3
  • 31
    • 77956964002 scopus 로고    scopus 로고
    • Best Practices for QSAR Model Development, Validation, and Exploitation
    • Tropsha, A. Best Practices for QSAR Model Development, Validation, and Exploitation Mol. Inf. 2010, 29, 476-488
    • (2010) Mol. Inf. , vol.29 , pp. 476-488
    • Tropsha, A.1
  • 34
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • Burbidge, R.; Trotter, M.; Buxton, B.; Holden, S. Drug design by machine learning: support vector machines for pharmaceutical data analysis BMC Neurol. 2001, 26, 5-14
    • (2001) BMC Neurol. , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 35
    • 60249084015 scopus 로고    scopus 로고
    • Effective ribavirin concentration in mice brain using cyclodextrin as a drug carrier: Evaluation in a measles encephalitis model
    • Jeulina, H.; Venard, V.; Carapito, D.; Finance, C.; Kedzierewicz, F. Effective ribavirin concentration in mice brain using cyclodextrin as a drug carrier: Evaluation in a measles encephalitis model Antiviral Res. 2009, 81, 261-266
    • (2009) Antiviral Res. , vol.81 , pp. 261-266
    • Jeulina, H.1    Venard, V.2    Carapito, D.3    Finance, C.4    Kedzierewicz, F.5
  • 36
    • 0023965741 scopus 로고
    • SMILES, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules
    • Weininger, D. SMILES, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules J. Chem. Inf. Comput. Sci. 1988, 28, 31-36
    • (1988) J. Chem. Inf. Comput. Sci. , vol.28 , pp. 31-36
    • Weininger, D.1
  • 37
    • 84862880512 scopus 로고    scopus 로고
    • Chemical Identifier Resolver beta 4. (accessed May 18).
    • Chemical Identifier Resolver beta 4. http://cactus.nci.nih.gov/chemical/ structure (accessed May 18, 2011).
    • (2011)
  • 38
    • 84862880509 scopus 로고    scopus 로고
    • NCI/CADD Group Chemoinformatics Tools and User Services. (accessed May 18).
    • NCI/CADD Group Chemoinformatics Tools and User Services. http://cactus.nci.nih.gov/ (accessed May 18, 2011).
    • (2011)
  • 39
    • 84862861571 scopus 로고    scopus 로고
    • Daylight Fingerprints - Screening and Similarity. (accessed May 18).
    • Daylight Fingerprints-Screening and Similarity. http://www.daylight.com/ dayhtml/doc/theory/theory.finger.html (accessed May 18, 2011).
    • (2011)
  • 40
    • 0001509942 scopus 로고    scopus 로고
    • Prediction of physicochemical parameters by atomic contributions
    • Wildman, S. A.; Crippen, G. M. Prediction of physicochemical parameters by atomic contributions J. Chem. Inf. Comput. Sci. 1999, 39, 868-873
    • (1999) J. Chem. Inf. Comput. Sci. , vol.39 , pp. 868-873
    • Wildman, S.A.1    Crippen, G.M.2
  • 41
    • 0034609833 scopus 로고    scopus 로고
    • Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties
    • Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties J. Med. Chem. 2000, 3714-3717
    • (2000) J. Med. Chem. , pp. 3714-3717
    • Ertl, P.1    Rohde, B.2    Selzer, P.3
  • 42
    • 41249091782 scopus 로고    scopus 로고
    • Pybel: A Python wrapper for the OpenBabel cheminformatics toolkit
    • O'Boyle, N. M.; Morley, C.; Hutchison, G. R. Pybel: a Python wrapper for the OpenBabel cheminformatics toolkit Chem. Cent. J. 2008, 2
    • (2008) Chem. Cent. J. , pp. 2
    • O'Boyle, N.M.1    Morley, C.2    Hutchison, G.R.3
  • 45
    • 27344449477 scopus 로고    scopus 로고
    • Computing chemistry on the web
    • Tetko, I. V. Computing chemistry on the web Drug Discovery Today 2005, 10, 1497-1500
    • (2005) Drug Discovery Today , vol.10 , pp. 1497-1500
    • Tetko, I.V.1
  • 47
    • 84862861573 scopus 로고    scopus 로고
    • randomForest: Breiman and Cutler's random forests for classification and regression. (accessed April 10).
    • randomForest: Breiman and Cutler's random forests for classification and regression. http://cran.r-project.org/web/packages/randomForest/randomForest (accessed April 10, 2011).
    • (2011)
  • 48
    • 84862861575 scopus 로고    scopus 로고
    • e1071: Misc Functions of the Department of Statistics (e1071), TU Wien. (accessed February 12).
    • e1071: Misc Functions of the Department of Statistics (e1071), TU Wien. http://cran.r-project.org/web/packages/e1071/e1071.pdf (accessed February 12, 2012).
    • (2012)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.