-
1
-
-
33645505792
-
Convexity, classification, and risk bounds
-
Bartlett P.L., Jordan M.I., McAuliffe J.D. Convexity, classification, and risk bounds. Journal of the American Statistical Association 2006, 101:138-156.
-
(2006)
Journal of the American Statistical Association
, vol.101
, pp. 138-156
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
5
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
Fan J., Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 2001, 96:1348-1360.
-
(2001)
Journal of the American Statistical Association
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
6
-
-
4944267519
-
New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis
-
Fan J., Li R. New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis. Journal of the American Statistical Association 2004, 99:710-723.
-
(2004)
Journal of the American Statistical Association
, vol.99
, pp. 710-723
-
-
Fan, J.1
Li, R.2
-
7
-
-
24344502730
-
Nonconcave penalized likelihood with a diverging number of parameters
-
Fan J., Peng H. Nonconcave penalized likelihood with a diverging number of parameters. Annals of Statistics 2004, 32:928-961.
-
(2004)
Annals of Statistics
, vol.32
, pp. 928-961
-
-
Fan, J.1
Peng, H.2
-
8
-
-
0002109783
-
An overview of predictive learning and function approximation.
-
In: From Statistics and Neural Networks. Springer-Verlag.
-
Friedman, J.H., 1993. An overview of predictive learning and function approximation. In: From Statistics and Neural Networks. Springer-Verlag.
-
(1993)
-
-
Friedman, J.H.1
-
9
-
-
0003684449
-
-
Springer
-
Hastie T., Tibshirani R., Friedman J. The Element of Statistical Learning: Data Mining, Inference, and Prediction 2001, Springer.
-
(2001)
The Element of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
10
-
-
77951622287
-
Asymptotic oracle properties of scad-penalized least squares estimators.
-
IMS Lecture Notes-Monograph Series.
-
Huang, J., Xie, H., 2007. Asymptotic oracle properties of scad-penalized least squares estimators. In: Asymptotics: Particles, Processes, and Inverse Problems. IMS Lecture Notes-Monograph Series.
-
(2007)
Asymptotics: Particles, Processes, and Inverse Problems.
-
-
Huang, J.1
Xie, H.2
-
12
-
-
0034287156
-
Asymptotics for lasso-type estimators
-
Knight K., Fu W. Asymptotics for lasso-type estimators. Annals of Statistics 2000, 28:1356-1378.
-
(2000)
Annals of Statistics
, vol.28
, pp. 1356-1378
-
-
Knight, K.1
Fu, W.2
-
13
-
-
48849101115
-
A Bahadur representation of the linear support vector machine
-
Koo J.-Y., Lee Y., Kim Y., Park C. A Bahadur representation of the linear support vector machine. Journal of Machine Learning Research 2008, 9:1343-1368.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1343-1368
-
-
Koo, J.-Y.1
Lee, Y.2
Kim, Y.3
Park, C.4
-
14
-
-
33747496466
-
Structured multicategory support vector machines with analysis of variance decomposition
-
Lee Y., Kim Y., Lee S., Koo J.-Y. Structured multicategory support vector machines with analysis of variance decomposition. Biometrika 2006, 93:555-571.
-
(2006)
Biometrika
, vol.93
, pp. 555-571
-
-
Lee, Y.1
Kim, Y.2
Lee, S.3
Koo, J.-Y.4
-
15
-
-
2342495357
-
A note on margin-based loss functions in classification
-
Lin Y. A note on margin-based loss functions in classification. Statistics and Probability Letters 2004, 68:73-82.
-
(2004)
Statistics and Probability Letters
, vol.68
, pp. 73-82
-
-
Lin, Y.1
-
16
-
-
67349234428
-
Convergence rates of generalization errors for margin-based classification
-
Park C. Convergence rates of generalization errors for margin-based classification. Journal of Statistical Planning and Inference 2009, 139:2543-2551.
-
(2009)
Journal of Statistical Planning and Inference
, vol.139
, pp. 2543-2551
-
-
Park, C.1
-
17
-
-
84971936861
-
Asymptotics for least absolute deviation regression estimators
-
Pollard D. Asymptotics for least absolute deviation regression estimators. Econometric Theory 1991, 7:186-199.
-
(1991)
Econometric Theory
, vol.7
, pp. 186-199
-
-
Pollard, D.1
-
18
-
-
84862827781
-
-
Asymptotic distribution and sparsistency for l1 penalized parametric M-estimators, with applications to linear SVM and logistic regression, arXiv:0908.1940v1.
-
Rocha, G., Wang, X., Yu, B., 2009. Asymptotic distribution and sparsistency for l1 penalized parametric M-estimators, with applications to linear SVM and logistic regression, arXiv:0908.1940v1.
-
(2009)
-
-
Rocha, G.1
Wang, X.2
Yu, B.3
-
20
-
-
12444265838
-
Consistency of support vector machines and other regularized kernel classifiers
-
Steinwart I. Consistency of support vector machines and other regularized kernel classifiers. IEEE Transactions on Information Theory 2005, 51:128-142.
-
(2005)
IEEE Transactions on Information Theory
, vol.51
, pp. 128-142
-
-
Steinwart, I.1
-
21
-
-
34247197035
-
Fast rates for support vector machines using gaussian kernels
-
Steinwart I., Scovel J.C. Fast rates for support vector machines using gaussian kernels. Annals of Statistics 2007, 35:575-607.
-
(2007)
Annals of Statistics
, vol.35
, pp. 575-607
-
-
Steinwart, I.1
Scovel, J.C.2
-
23
-
-
68149091660
-
Variable selection in quantile regression
-
Wu Y., Liu Y. Variable selection in quantile regression. Statistica Sinica 2009, 19:801-817.
-
(2009)
Statistica Sinica
, vol.19
, pp. 801-817
-
-
Wu, Y.1
Liu, Y.2
-
24
-
-
30344438839
-
Gene selection using support vector machines with non-convex penalty
-
Zhang H.H., Ahn J., Lin X., Park C. Gene selection using support vector machines with non-convex penalty. Bioinformatics 2005, 22:88-95.
-
(2005)
Bioinformatics
, vol.22
, pp. 88-95
-
-
Zhang, H.H.1
Ahn, J.2
Lin, X.3
Park, C.4
-
25
-
-
4644257995
-
Statistical behavior and consistency of classification methods based on convex risk minimization
-
Zhang T. Statistical behavior and consistency of classification methods based on convex risk minimization. Annals of Statistics 2004, 32:56-85.
-
(2004)
Annals of Statistics
, vol.32
, pp. 56-85
-
-
Zhang, T.1
-
27
-
-
24644515558
-
1-Norm support vector machines.
-
MIT Press
-
Zhu, J., Rosset, S., Hastie, T., Tibshirani, R., 2003. 1-Norm support vector machines. In: Neural Information Processing Systems. MIT Press, p. 16.
-
(2003)
Neural Information Processing Systems.
, pp. 16
-
-
Zhu, J.1
Rosset, S.2
Hastie, T.3
Tibshirani, R.4
-
29
-
-
51049104549
-
One-step sparse estimates in nonconcave penalized likelihood models
-
Zou H., Li R. One-step sparse estimates in nonconcave penalized likelihood models. Annals of Statistics 2008, 36:1509-1533.
-
(2008)
Annals of Statistics
, vol.36
, pp. 1509-1533
-
-
Zou, H.1
Li, R.2
|