-
2
-
-
76749133610
-
Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate
-
Zheng Y., Josefowicz S., Chaudhry A., et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 2010, 463:808-812.
-
(2010)
Nature
, vol.463
, pp. 808-812
-
-
Zheng, Y.1
Josefowicz, S.2
Chaudhry, A.3
-
3
-
-
33644854871
-
A specific CpG site demethylation in the human interleukin 2 gene promoter is an epigenetic memory
-
Murayama A., Sakura K., Nakama M., et al. A specific CpG site demethylation in the human interleukin 2 gene promoter is an epigenetic memory. EMBO J. 2006, 25:1081-1092.
-
(2006)
EMBO J.
, vol.25
, pp. 1081-1092
-
-
Murayama, A.1
Sakura, K.2
Nakama, M.3
-
5
-
-
0024673303
-
CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation
-
Iguchi-Ariga S.M., Schaffner W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 1989, 3:612-619.
-
(1989)
Genes Dev.
, vol.3
, pp. 612-619
-
-
Iguchi-Ariga, S.M.1
Schaffner, W.2
-
6
-
-
0037423186
-
The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation
-
Fuks F., Hurd P.J., Wolf D., et al. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem. 2003, 278:4035-4040.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 4035-4040
-
-
Fuks, F.1
Hurd, P.J.2
Wolf, D.3
-
7
-
-
0036144048
-
DNA methylation patterns and epigenetic memory
-
Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16:6-21.
-
(2002)
Genes Dev.
, vol.16
, pp. 6-21
-
-
Bird, A.1
-
8
-
-
0032845039
-
Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation
-
Wade P.A., Gegonne A., Jones P.L., et al. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat. Genet. 1999, 23:62-66.
-
(1999)
Nat. Genet.
, vol.23
, pp. 62-66
-
-
Wade, P.A.1
Gegonne, A.2
Jones, P.L.3
-
10
-
-
78049414227
-
Epigenetic reprogramming in plant and animal development
-
Feng S., Jacobsen S.E., Reik W. Epigenetic reprogramming in plant and animal development. Science 2010, 330:622-627.
-
(2010)
Science
, vol.330
, pp. 622-627
-
-
Feng, S.1
Jacobsen, S.E.2
Reik, W.3
-
11
-
-
0035839126
-
Epigenetic reprogramming in mammalian development
-
Reik W., Dean W., Walter J. Epigenetic reprogramming in mammalian development. Science 2001, 293:1089-1093.
-
(2001)
Science
, vol.293
, pp. 1089-1093
-
-
Reik, W.1
Dean, W.2
Walter, J.3
-
12
-
-
77249170184
-
Establishing, maintaining and modifying DNA methylation patterns in plants and animals
-
Law J.A., Jacobsen S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2010, 11:204-220.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 204-220
-
-
Law, J.A.1
Jacobsen, S.E.2
-
13
-
-
15744401773
-
Eukaryotic cytosine methyltransferases
-
Goll M.G., Bestor T.H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 2005, 74:481-514.
-
(2005)
Annu. Rev. Biochem.
, vol.74
, pp. 481-514
-
-
Goll, M.G.1
Bestor, T.H.2
-
14
-
-
0016692220
-
X-inactivation, differentiation, and DNA methylation
-
Riggs A.D. X-inactivation, differentiation, and DNA methylation. Cytogenet. Cell Genet. 1975, 14:9-25.
-
(1975)
Cytogenet. Cell Genet.
, vol.14
, pp. 9-25
-
-
Riggs, A.D.1
-
15
-
-
0017871218
-
Use of restriction enzymes to study eukaryotic DNA methylation. 2. Symmetry of methylated sites supports semi-conservative copying of methylation pattern
-
Bird A.P. Use of restriction enzymes to study eukaryotic DNA methylation. 2. Symmetry of methylated sites supports semi-conservative copying of methylation pattern. J. Mol. Biol. 1978, 118:49-60.
-
(1978)
J. Mol. Biol.
, vol.118
, pp. 49-60
-
-
Bird, A.P.1
-
16
-
-
0016439429
-
DNA modification mechanisms and gene activity during development
-
Holliday R., Pugh J.E. DNA modification mechanisms and gene activity during development. Science 1975, 187:226-232.
-
(1975)
Science
, vol.187
, pp. 226-232
-
-
Holliday, R.1
Pugh, J.E.2
-
17
-
-
0033615717
-
DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development
-
Okano M., Bell D.W., Haber D.A., et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999, 99:247-257.
-
(1999)
Cell
, vol.99
, pp. 247-257
-
-
Okano, M.1
Bell, D.W.2
Haber, D.A.3
-
18
-
-
73349104113
-
Active DNA Demethylation Mediated by DNA Glycosylases
-
Zhu J.-K. Active DNA Demethylation Mediated by DNA Glycosylases. Annu. Rev. Genet. 2009, 43:143-166.
-
(2009)
Annu. Rev. Genet.
, vol.43
, pp. 143-166
-
-
Zhu, J.-K.1
-
19
-
-
60549088692
-
Active DNA demethylation and DNA repair
-
Niehrs C. Active DNA demethylation and DNA repair. Differentiation 2009, 77:1-11.
-
(2009)
Differentiation
, vol.77
, pp. 1-11
-
-
Niehrs, C.1
-
20
-
-
66849119061
-
DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation
-
Ma D.K., Guo J.U., Ming G.L., et al. DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell Cycle 2009, 8:1526-1531.
-
(2009)
Cell Cycle
, vol.8
, pp. 1526-1531
-
-
Ma, D.K.1
Guo, J.U.2
Ming, G.L.3
-
22
-
-
26944485107
-
Preventing transcriptional gene silencing by active DNA demethylation
-
Kapoor A., Agius F., Zhu J.-K. Preventing transcriptional gene silencing by active DNA demethylation. FEBS Lett. 2005, 579:5889-5898.
-
(2005)
FEBS Lett.
, vol.579
, pp. 5889-5898
-
-
Kapoor, A.1
Agius, F.2
Zhu, J.-K.3
-
23
-
-
60749094831
-
Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis
-
Ma D.K., Jang M.-H., Guo J.U., et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 2009, 323:1074-1077.
-
(2009)
Science
, vol.323
, pp. 1074-1077
-
-
Ma, D.K.1
Jang, M.-H.2
Guo, J.U.3
-
24
-
-
57649196594
-
DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45
-
Rai K., Huggins I.J., James S.R., et al. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 2008, 135:1201-1212.
-
(2008)
Cell
, vol.135
, pp. 1201-1212
-
-
Rai, K.1
Huggins, I.J.2
James, S.R.3
-
25
-
-
77956189495
-
Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification
-
Ito S., D'Alessio A.C., Taranova O.V., et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010, 466:1129-1133.
-
(2010)
Nature
, vol.466
, pp. 1129-1133
-
-
Ito, S.1
D'Alessio, A.C.2
Taranova, O.V.3
-
26
-
-
77955900721
-
Inbreeding and epigenetics: beneficial as well as deleterious effects
-
Nebert D.W., Galvez-Peralta M., Shi Z., et al. Inbreeding and epigenetics: beneficial as well as deleterious effects. Nat. Rev. Genet. 2010, 11:662.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 662
-
-
Nebert, D.W.1
Galvez-Peralta, M.2
Shi, Z.3
-
27
-
-
0023907493
-
Interleukin-2: inception, impact, and implications
-
Smith K. Interleukin-2: inception, impact, and implications. Science 1988, 240:1169-1176.
-
(1988)
Science
, vol.240
, pp. 1169-1176
-
-
Smith, K.1
-
28
-
-
0019022864
-
The functional relationship of the interleukins
-
Smith K.A., Lachman L.B., Oppenheim J.J., et al. The functional relationship of the interleukins. J. Exp. Med. 1980, 151:1551-1556.
-
(1980)
J. Exp. Med.
, vol.151
, pp. 1551-1556
-
-
Smith, K.A.1
Lachman, L.B.2
Oppenheim, J.J.3
-
30
-
-
70450217879
-
Human DNA methylomes at base resolution show widespread epigenomic differences
-
Lister R., Pelizzola M., Dowen R.H., et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009, 462:315-322.
-
(2009)
Nature
, vol.462
, pp. 315-322
-
-
Lister, R.1
Pelizzola, M.2
Dowen, R.H.3
-
31
-
-
84857467013
-
Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks
-
Kobayashi H., Sakurai T., Imai M., et al. Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet. 2012, 8:e1002440.
-
(2012)
PLoS Genet.
, vol.8
-
-
Kobayashi, H.1
Sakurai, T.2
Imai, M.3
-
32
-
-
84862818950
-
-
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by the MLL fusion partner TET1, Science (2009) 1170116.
-
M. Tahiliani, K.P. Koh, Y. Shen, et al., Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by the MLL fusion partner TET1, Science (2009) 1170116.
-
-
-
Tahiliani, M.1
Koh, K.P.2
Shen, Y.3
-
33
-
-
0037340215
-
Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process
-
Bruniquel D., Schwartz R.H. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat. Immunol. 2003, 4:235-240.
-
(2003)
Nat. Immunol.
, vol.4
, pp. 235-240
-
-
Bruniquel, D.1
Schwartz, R.H.2
-
34
-
-
68949198784
-
Chromatin structure and DNA methylation of the IL-4 gene in human T(H)2 cells
-
Santangelo S., Cousins D.J., Triantaphyllopoulos K., et al. Chromatin structure and DNA methylation of the IL-4 gene in human T(H)2 cells. Chromosome Res. 2009, 17:485-496.
-
(2009)
Chromosome Res.
, vol.17
, pp. 485-496
-
-
Santangelo, S.1
Cousins, D.J.2
Triantaphyllopoulos, K.3
-
35
-
-
0346752253
-
Active recruitment of DNA methyltransferases regulates interleukin 4 in thymocytes and T cells
-
Makar K.W., Perez-Melgosa M., Shnyreva M., et al. Active recruitment of DNA methyltransferases regulates interleukin 4 in thymocytes and T cells. Nat. Immunol. 2003, 4:1183-1190.
-
(2003)
Nat. Immunol.
, vol.4
, pp. 1183-1190
-
-
Makar, K.W.1
Perez-Melgosa, M.2
Shnyreva, M.3
-
36
-
-
10344237554
-
A distinct region of the murine IFN-γ promoter is hypomethylated from early T cell development through mature naive and Th1 cell differentiation, but is hypermethylated in Th2 cells
-
Winders B.R., Schwartz R.H., Bruniquel D. A distinct region of the murine IFN-γ promoter is hypomethylated from early T cell development through mature naive and Th1 cell differentiation, but is hypermethylated in Th2 cells. J. Immunol. 2004, 173:7377-7384.
-
(2004)
J. Immunol.
, vol.173
, pp. 7377-7384
-
-
Winders, B.R.1
Schwartz, R.H.2
Bruniquel, D.3
-
37
-
-
0041929384
-
Effect of promoter methylation on the regulation of IFN-γ gene during in vitro differentiation of human peripheral blood T cells into a Th2 population
-
Yano S., Ghosh P., Kusaba H., et al. Effect of promoter methylation on the regulation of IFN-γ gene during in vitro differentiation of human peripheral blood T cells into a Th2 population. J. Immunol. 2003, 171:2510-2516.
-
(2003)
J. Immunol.
, vol.171
, pp. 2510-2516
-
-
Yano, S.1
Ghosh, P.2
Kusaba, H.3
-
38
-
-
34249279527
-
Stability and flexibility of epigenetic gene regulation in mammalian development
-
Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007, 447:425-432.
-
(2007)
Nature
, vol.447
, pp. 425-432
-
-
Reik, W.1
-
41
-
-
0036098657
-
Age-dependent DNA methylation changes in the ITGAL (CD11a) promoter
-
Zhang Z., Deng C., Lu Q., et al. Age-dependent DNA methylation changes in the ITGAL (CD11a) promoter. Mech. Ageing Develop. 2002, 123:1257-1268.
-
(2002)
Mech. Ageing Develop.
, vol.123
, pp. 1257-1268
-
-
Zhang, Z.1
Deng, C.2
Lu, Q.3
-
42
-
-
0035261399
-
IL-18-stimulated GADD45[beta] required in cytokine-induced, but not TCR-induced, IFN-[gamma] production
-
Yang J., Zhu H., Murphy T.L., et al. IL-18-stimulated GADD45[beta] required in cytokine-induced, but not TCR-induced, IFN-[gamma] production. Nat. Immunol. 2001, 2:157-164.
-
(2001)
Nat. Immunol.
, vol.2
, pp. 157-164
-
-
Yang, J.1
Zhu, H.2
Murphy, T.L.3
-
43
-
-
0346496028
-
Gadd45[beta] is important for perpetuating cognate and inflammatory signals in T cells
-
Lu B., Ferrandino A.F., Flavell R.A. Gadd45[beta] is important for perpetuating cognate and inflammatory signals in T cells. Nat. Immunol. 2004, 5:38-44.
-
(2004)
Nat. Immunol.
, vol.5
, pp. 38-44
-
-
Lu, B.1
Ferrandino, A.F.2
Flavell, R.A.3
-
44
-
-
0034743912
-
3 mediates the activation of the p38 and JNK MAP kinase pathways and cytokine production in effector TH1 cells
-
3 mediates the activation of the p38 and JNK MAP kinase pathways and cytokine production in effector TH1 cells. Immunity 2001, 14:583-590.
-
(2001)
Immunity
, vol.14
, pp. 583-590
-
-
Lu, B.1
Yu, H.2
Chow, C.-W.3
-
45
-
-
80052303426
-
TET family proteins and their role in stem cell differentiation and transformation
-
Cimmino L., Abdel-Wahab O., Levine Ross L., et al. TET family proteins and their role in stem cell differentiation and transformation. Cell Stem Cell 2011, 9:193-204.
-
(2011)
Cell Stem Cell
, vol.9
, pp. 193-204
-
-
Cimmino, L.1
Abdel-Wahab, O.2
Levine, R.L.3
|