메뉴 건너뛰기




Volumn 19, Issue 2, 2012, Pages 139-160

Bivariate geostatistical modelling: A review and an application to spatial variation in radon concentrations

Author keywords

Common component model; Kernel convolution; Linear model of coregionalisation

Indexed keywords

CALCIUM; GEOSTATISTICS; MAGNESIUM; MODELING; RADON; SOIL CHEMISTRY; SPATIAL VARIATION;

EID: 84862673322     PISSN: 13528505     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10651-011-0179-7     Document Type: Article
Times cited : (19)

References (61)
  • 1
    • 47649103974 scopus 로고    scopus 로고
    • Gaussian predictive process models for large spatial data sets
    • Banerjee S, Gelfand A, Finley A, Sang H (2008) Gaussian predictive process models for large spatial data sets. J Roy Stat Soc B 70: 825-848.
    • (2008) J Roy Stat Soc B , vol.70 , pp. 825-848
    • Banerjee, S.1    Gelfand, A.2    Finley, A.3    Sang, H.4
  • 2
    • 33846341173 scopus 로고    scopus 로고
    • Copula-based geostatistical models for groundwater quality parameters
    • doi:10.1029/2005WR004754
    • Bárdossy A (2006) Copula-based geostatistical models for groundwater quality parameters. Water Resour Res 42: w11416. doi: 10. 1029/2005WR004754.
    • (2006) Water Resour Res , vol.42
    • Bárdossy, A.1
  • 3
    • 53649106056 scopus 로고    scopus 로고
    • Geostatistical interpolation using copulas
    • doi: 10. 1029/2007WR006115
    • Bárdossy A, Li J (2008) Geostatistical interpolation using copulas. Water Resour Res 44: w07412. doi: 10. 1029/2007WR006115.
    • (2008) Water Resour Res , vol.44
    • Bárdossy, A.1    Li, J.2
  • 4
    • 0030436141 scopus 로고    scopus 로고
    • Blackbox kriging: spatial prediction without specifying variogram models
    • Barry R, Ver Hoef J (1996) Blackbox kriging: spatial prediction without specifying variogram models. J Agric Biol Environ Stat 1: 297-322.
    • (1996) J Agric Biol Environ Stat , vol.1 , pp. 297-322
    • Barry, R.1    Ver Hoef, J.2
  • 5
    • 0009870428 scopus 로고    scopus 로고
    • Hierarchical Bayesian modeling in the environmental sciences
    • Berliner L (2000) Hierarchical Bayesian modeling in the environmental sciences. Allgemeines Statistische Archiv 84: 141-153.
    • (2000) Allgemeines Statistische Archiv , vol.84 , pp. 141-153
    • Berliner, L.1
  • 6
    • 79959205293 scopus 로고    scopus 로고
    • Tech. rep., School of Mathematical and Computing Sciences, Victoria University of Wellington
    • Boyle P, Frean M (2005) Multiple output Gaussian process regression. Tech. rep., School of Mathematical and Computing Sciences, Victoria University of Wellington.
    • (2005) Multiple output Gaussian process regression
    • Boyle, P.1    Frean, M.2
  • 7
    • 70349917994 scopus 로고    scopus 로고
    • Dynamical model for indoor radon concentration monitoring
    • Brabec M, Jílek K (2009) Dynamical model for indoor radon concentration monitoring. Environmetrics 20: 718-729.
    • (2009) Environmetrics , vol.20 , pp. 718-729
    • Brabec, M.1    Jílek, K.2
  • 8
    • 34548023081 scopus 로고    scopus 로고
    • Dynamic factor process convolution models for multivariate space-time data with application to air quality assessment
    • Calder C (2007) Dynamic factor process convolution models for multivariate space-time data with application to air quality assessment. Environ Ecol Stat 14: 229-247.
    • (2007) Environ Ecol Stat , vol.14 , pp. 229-247
    • Calder, C.1
  • 9
    • 38349102465 scopus 로고    scopus 로고
    • A dynamic process convolution approach to modeling ambient particulate matter concentrations
    • Calder C (2008) A dynamic process convolution approach to modeling ambient particulate matter concentrations. Environmetrics 19: 39-48.
    • (2008) Environmetrics , vol.19 , pp. 39-48
    • Calder, C.1
  • 11
    • 62749126688 scopus 로고    scopus 로고
    • Regional spatial modelling of topsoil geochemistry
    • Calder C, Craigmile P, Zhang J (2009) Regional spatial modelling of topsoil geochemistry. Biometrics 65: 206-215.
    • (2009) Biometrics , vol.65 , pp. 206-215
    • Calder, C.1    Craigmile, P.2    Zhang, J.3
  • 14
    • 0032465020 scopus 로고    scopus 로고
    • The variance-based cross-variogram: you can add apples and oranges
    • Cressie N, Wikle C (1998) The variance-based cross-variogram: you can add apples and oranges. Math Geol 30: 789-799.
    • (1998) Math Geol , vol.30 , pp. 789-799
    • Cressie, N.1    Wikle, C.2
  • 15
    • 0032438887 scopus 로고
    • Spatial and temporal study of nitrate concentration in groundwater by means of coregionalization
    • D'Agostino V, Greene E, Passarella G, Vurro M (1993) Spatial and temporal study of nitrate concentration in groundwater by means of coregionalization. Environ Geol 36: 285-295.
    • (1993) Environ Geol , vol.36 , pp. 285-295
    • D'Agostino, V.1    Greene, E.2    Passarella, G.3    Vurro, M.4
  • 17
    • 85011135932 scopus 로고    scopus 로고
    • Understanding relationships using copulas
    • Frees E, Valdez E (1998) Understanding relationships using copulas. North Am Actuar J 2: 1-25.
    • (1998) North Am Actuar J , vol.2 , pp. 1-25
    • Frees, E.1    Valdez, E.2
  • 18
    • 0034897555 scopus 로고    scopus 로고
    • A high frequency kriging approach for nonstationary environmental processes
    • Fuentes M (2001) A high frequency kriging approach for nonstationary environmental processes. Environmetrics 12: 469-483.
    • (2001) Environmetrics , vol.12 , pp. 469-483
    • Fuentes, M.1
  • 19
    • 84993812365 scopus 로고    scopus 로고
    • Interpolation of nonstationary air pollution processes: a spatial spectral approach
    • Fuentes M (2002) Interpolation of nonstationary air pollution processes: a spatial spectral approach. Stat Modell 2: 281-298.
    • (2002) Stat Modell , vol.2 , pp. 281-298
    • Fuentes, M.1
  • 20
    • 0042401905 scopus 로고    scopus 로고
    • Spectral methods for nonstationary spatial processes
    • Fuentes M (2002) Spectral methods for nonstationary spatial processes. Biometrika 89: 197-210.
    • (2002) Biometrika , vol.89 , pp. 197-210
    • Fuentes, M.1
  • 22
    • 0028254451 scopus 로고
    • On a controversial method for modeling a coregionalization
    • Goovaerts P (1994) On a controversial method for modeling a coregionalization. Math Geol 26: 197-204.
    • (1994) Math Geol , vol.26 , pp. 197-204
    • Goovaerts, P.1
  • 23
    • 0026465454 scopus 로고
    • Linear coregionalization model: tools for estimation and choice of cross-variogram matrix
    • Goulard M, Voltz M (1992) Linear coregionalization model: tools for estimation and choice of cross-variogram matrix. Math Geol 24: 269-286.
    • (1992) Math Geol , vol.24 , pp. 269-286
    • Goulard, M.1    Voltz, M.2
  • 24
    • 0029668953 scopus 로고    scopus 로고
    • Multivariate spatial prediction in the presence of non-linear trend and covariance non-stationarity
    • Haas T (1996) Multivariate spatial prediction in the presence of non-linear trend and covariance non-stationarity. Environmetrics 7: 145-165.
    • (1996) Environmetrics , vol.7 , pp. 145-165
    • Haas, T.1
  • 25
    • 0032422974 scopus 로고    scopus 로고
    • A process-convolution approach to modelling temperatures in the North Atlantic Ocean
    • Higdon D (1998) A process-convolution approach to modelling temperatures in the North Atlantic Ocean. Environ Ecol Stat 5: 173-190.
    • (1998) Environ Ecol Stat , vol.5 , pp. 173-190
    • Higdon, D.1
  • 26
    • 2942619617 scopus 로고    scopus 로고
    • Space and space-time modeling using process convolutions
    • C. Anderson, V. Barnett, P. Chatwin, and A. El-Shaarawi (Eds.), New York: Springer
    • Higdon D (2002) Space and space-time modeling using process convolutions. In: Anderson C, Barnett V, Chatwin P, El-Shaarawi A (eds) Quantitative methods for current environmental issues. Springer, New York, pp 37-56.
    • (2002) Quantitative Methods for Current Environmental Issues , pp. 37-56
    • Higdon, D.1
  • 27
    • 69449103882 scopus 로고    scopus 로고
    • Uncertainties in radon related to house-specific factors and proximity to geological boundaries in England
    • Hunter N, Muirhead C, Miles J, Appleton J (2009) Uncertainties in radon related to house-specific factors and proximity to geological boundaries in England. Radiat Prot Dosim 136: 17-22.
    • (2009) Radiat Prot Dosim , vol.136 , pp. 17-22
    • Hunter, N.1    Muirhead, C.2    Miles, J.3    Appleton, J.4
  • 30
    • 0035649641 scopus 로고    scopus 로고
    • A shared component model for detecting joint and selective clustering of two diseases
    • Knorr-Held L, Best N (2001) A shared component model for detecting joint and selective clustering of two diseases. J Roy Stat Soc A 164: 73-85.
    • (2001) J Roy Stat Soc A , vol.164 , pp. 73-85
    • Knorr-Held, L.1    Best, N.2
  • 32
    • 0036284630 scopus 로고    scopus 로고
    • Robust estimation of the pseudo cross-variogram for cokriging soil properties
    • Lark R (2002) Robust estimation of the pseudo cross-variogram for cokriging soil properties. Eur J Soil Sci 53: 253-270.
    • (2002) Eur J Soil Sci , vol.53 , pp. 253-270
    • Lark, R.1
  • 33
    • 0037374135 scopus 로고    scopus 로고
    • Two robust estimators of the cross-variogram for multivariate geostatistical analysis of soil properties
    • Lark R (2003) Two robust estimators of the cross-variogram for multivariate geostatistical analysis of soil properties. Eur J Soil Sci 54: 187-201.
    • (2003) Eur J Soil Sci , vol.54 , pp. 187-201
    • Lark, R.1
  • 34
    • 17444426059 scopus 로고    scopus 로고
    • Efficient models for correlated data via convolutions of intrinsic processes
    • Lee H, Higdon D, Calder C, Holloman C (2005) Efficient models for correlated data via convolutions of intrinsic processes. Stat Model 5: 53-74.
    • (2005) Stat Model , vol.5 , pp. 53-74
    • Lee, H.1    Higdon, D.2    Calder, C.3    Holloman, C.4
  • 37
    • 57249090982 scopus 로고    scopus 로고
    • Testing the covariance structure of multivariate random fields
    • Li B, Genton M, Sherman M (2008) Testing the covariance structure of multivariate random fields. Biometrika 95: 813-829.
    • (2008) Biometrika , vol.95 , pp. 813-829
    • Li, B.1    Genton, M.2    Sherman, M.3
  • 38
    • 34248573628 scopus 로고    scopus 로고
    • Multivariate spatial modeling for geostatistical data using convolved covariance functions
    • Majumdar A, Gelfand A (2007) Multivariate spatial modeling for geostatistical data using convolved covariance functions. Math Geol 39: 225-245.
    • (2007) Math Geol , vol.39 , pp. 225-245
    • Majumdar, A.1    Gelfand, A.2
  • 40
    • 36248938196 scopus 로고    scopus 로고
    • Estimation of linear models of coregionalization by residual maximum likelihood
    • Marchant B, Lark R (2007) Estimation of linear models of coregionalization by residual maximum likelihood. Eur J Soil Sci 58: 1506-1513.
    • (2007) Eur J Soil Sci , vol.58 , pp. 1506-1513
    • Marchant, B.1    Lark, R.2
  • 41
    • 0002572881 scopus 로고
    • Spatial-temporal analysis of multivariate environmental monitoring data
    • G. Patil and C. Rao (Eds.), Amsterdam: North-Holland
    • Mardia K, Goodall C (1993) Spatial-temporal analysis of multivariate environmental monitoring data. In: Patil G, Rao C (eds) Multivariate environmental statistics. North-Holland, Amsterdam, pp 347-386.
    • (1993) Multivariate Environmental Statistics , pp. 347-386
    • Mardia, K.1    Goodall, C.2
  • 42
    • 0002691349 scopus 로고    scopus 로고
    • Design of air-quality monitoring networks
    • In: Nychka D, Piegorsch W, Cox L (eds), Springer, New York, Chap
    • Nychka D, Saltzman N (1998) Design of air-quality monitoring networks. In: Nychka D, Piegorsch W, Cox L (eds) Case studies in Environmental Statistics. Springer, New York, Chap 4, pp 51-76.
    • (1998) Case studies in Environmental Statistics , vol.4 , pp. 51-76
    • Nychka, D.1    Saltzman, N.2
  • 43
    • 4344662401 scopus 로고    scopus 로고
    • Gaussian cosimulation: modelling of the cross-covariance
    • Oliver D (2003) Gaussian cosimulation: modelling of the cross-covariance. Math Geol 35: 681-698.
    • (2003) Math Geol , vol.35 , pp. 681-698
    • Oliver, D.1
  • 45
    • 84907095419 scopus 로고    scopus 로고
    • R: a language and environment for statistical computing
    • R Development Core Team, Vienna, Austria, URL, ISBN 3-900051-07-0
    • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, URL http://www. R-project. org, ISBN 3-900051-07-0.
    • (2008) R Foundation for Statistical Computing
  • 46
    • 0002062430 scopus 로고    scopus 로고
    • geoR: a package for geostatistical analysis
    • URL, ISSN 1609-3631
    • Ribeiro Jr P, Diggle P (2001) geoR: a package for geostatistical analysis. R-NEWS 1(2): 14-18, URL http://CRAN. R-project. org/doc/Rnews/, ISSN 1609-3631.
    • (2001) R-NEWS , vol.1 , Issue.2 , pp. 14-18
    • Ribeiro Jr., P.1    Diggle, P.2
  • 47
    • 78349236578 scopus 로고    scopus 로고
    • A class of convolution-based models for spatio-temporal processes with non-separable covariance structure
    • Rodrigues A, Diggle P (2010) A class of convolution-based models for spatio-temporal processes with non-separable covariance structure. Scand J Stat 37: 553-567.
    • (2010) Scand J Stat , vol.37 , pp. 553-567
    • Rodrigues, A.1    Diggle, P.2
  • 48
    • 0002472499 scopus 로고    scopus 로고
    • A hierarchical approach to multivariate spatial modeling and prediction
    • Royle J, Berliner L (1999) A hierarchical approach to multivariate spatial modeling and prediction. J Agric Biol and Environ Stat 4: 29-56.
    • (1999) J Agric Biol and Environ Stat , vol.4 , pp. 29-56
    • Royle, J.1    Berliner, L.2
  • 49
    • 0036522614 scopus 로고    scopus 로고
    • Fitting Gaussian Markov random fields to Gaussian fields
    • Rue H, Tjelmeland H (2002) Fitting Gaussian Markov random fields to Gaussian fields. Scand J Stat 29: 31-49.
    • (2002) Scand J Stat , vol.29 , pp. 31-49
    • Rue, H.1    Tjelmeland, H.2
  • 50
    • 1642309656 scopus 로고    scopus 로고
    • A Bayesian coregionalization approach for multivariate pollution data
    • Schmidt A, Gelfand A (2003) A Bayesian coregionalization approach for multivariate pollution data. J Geophy Res Atmos 108(D24): 8783.
    • (2003) J Geophy Res Atmos , vol.108 , Issue.D24 , pp. 8783
    • Schmidt, A.1    Gelfand, A.2
  • 52
  • 53
    • 0032525527 scopus 로고    scopus 로고
    • Constructing and fitting models for cokriging and multivariable spatial prediction
    • Ver Hoef J, Barry R (1998) Constructing and fitting models for cokriging and multivariable spatial prediction. J Stat Plan Inference 69: 275-294.
    • (1998) J Stat Plan Inference , vol.69 , pp. 275-294
    • Ver Hoef, J.1    Barry, R.2
  • 54
    • 0027387626 scopus 로고
    • Multivariable spatial prediction
    • Ver Hoef J, Cressie N (1993) Multivariable spatial prediction. Math Geol 25: 219-240.
    • (1993) Math Geol , vol.25 , pp. 219-240
    • Ver Hoef, J.1    Cressie, N.2
  • 55
    • 3042679820 scopus 로고    scopus 로고
    • Flexible spatial models for kriging and cokriging using moving averages and the fast fourier transform (fft)
    • Ver Hoef J, Cressie N, Barry R (2004) Flexible spatial models for kriging and cokriging using moving averages and the fast fourier transform (fft). J Comput Graph Stat 13: 265-282.
    • (2004) J Comput Graph Stat , vol.13 , pp. 265-282
    • Ver Hoef, J.1    Cressie, N.2    Barry, R.3
  • 57
    • 1542736294 scopus 로고    scopus 로고
    • Quantifying the risks from residential radon
    • In: Barnett V, Stein A, Feridun Turkman K (eds). Wiley, Chichester, chap
    • Whitley E, Darby S (1999) Quantifying the risks from residential radon. In: Barnett V, Stein A, Feridun Turkman K (eds) Statistical aspects of health and the environment. Wiley, Chichester, chap 5, pp 73-89.
    • (1999) Statistical aspects of health and the environment , vol.5 , pp. 73-89
    • Whitley, E.1    Darby, S.2
  • 60
    • 2142734871 scopus 로고    scopus 로고
    • Inconsistent estimation and asymptopically equal interpolations in model-based geostatistics
    • Zhang H (2004) Inconsistent estimation and asymptopically equal interpolations in model-based geostatistics. J Am Stat Assoc 99: 250-261.
    • (2004) J Am Stat Assoc , vol.99 , pp. 250-261
    • Zhang, H.1
  • 61
    • 33947110315 scopus 로고    scopus 로고
    • Maximum-likelihood estimation for multivariate spatial linear coregionalization models
    • Zhang H (2007) Maximum-likelihood estimation for multivariate spatial linear coregionalization models. Environmetrics 18: 125-139.
    • (2007) Environmetrics , vol.18 , pp. 125-139
    • Zhang, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.