메뉴 건너뛰기




Volumn 37, Issue 4, 2010, Pages 553-567

A Class of Convolution-Based Models for Spatio-Temporal Processes with Non-Separable Covariance Structure

Author keywords

Convolution based models; Non separability; Spatio temporal processes

Indexed keywords


EID: 78349236578     PISSN: 03036898     EISSN: 14679469     Source Type: Journal    
DOI: 10.1111/j.1467-9469.2009.00675.x     Document Type: Article
Times cited : (76)

References (38)
  • 2
    • 0030436141 scopus 로고    scopus 로고
    • Blackbox Kriging: spatial prediction without specifying variogram models
    • Barry, R. P. & Ver Hoef, J. M. (1996). Blackbox Kriging: spatial prediction without specifying variogram models. J. Agric. Biol. Environ. Stat. 1, 297-322.
    • (1996) J. Agric. Biol. Environ. Stat. , vol.1 , pp. 297-322
    • Barry, R.P.1    Ver Hoef, J.M.2
  • 3
    • 85179773165 scopus 로고
    • Harmonic analysis and the theory of probability
    • University of California Press, Berkeley and Los Angeles, CA.
    • Bochner, S. (1955). Harmonic analysis and the theory of probability. University of California Press, Berkeley and Los Angeles, CA.
    • (1955)
    • Bochner, S.1
  • 5
    • 0035649063 scopus 로고    scopus 로고
    • Space-time calibration of a radar rainfall data
    • Brown, P. E., Diggle, P., Lord, M. E. & Young, P. C. (2001). Space-time calibration of a radar rainfall data. Appl. Statist. 50, 221-241.
    • (2001) Appl. Statist. , vol.50 , pp. 221-241
    • Brown, P.E.1    Diggle, P.2    Lord, M.E.3    Young, P.C.4
  • 6
    • 17444376543 scopus 로고    scopus 로고
    • Case studies in Bayesian statistics. Volume VI
    • In, eds, C. Gatsonis, R. E. Kass, A. Carriquiry, A. Gelman, D. Higdon, D. K. Pauler I. Verdinelli), Springer-Verlag, New York.
    • Calder, C. A. (2002). Exploring space-time structure in ozone concentration using a dynamic process convolution model. In Case studies in Bayesian statistics. Volume VI (eds C. Gatsonis, R. E. Kass, A. Carriquiry, A. Gelman, D. Higdon, D. K. Pauler & I. Verdinelli), 165-176. Springer-Verlag, New York.
    • (2002) Exploring space-time structure in ozone concentration using a dynamic process convolution model , pp. 165-176
    • Calder, C.A.1
  • 7
    • 34548023081 scopus 로고    scopus 로고
    • Dynamic factor process convolution models for multivariate space-time data with application to air quality assessment
    • Calder, C. A. (2007). Dynamic factor process convolution models for multivariate space-time data with application to air quality assessment. Environ. Ecol. Stat. 14, 229-247.
    • (2007) Environ. Ecol. Stat. , vol.14 , pp. 229-247
    • Calder, C.A.1
  • 8
    • 78349269479 scopus 로고    scopus 로고
    • Proceedings of the 56th Session of the International Statistical Institute.
    • In Lisbon, Portugal.
    • Calder, C. A. & Cressie, N. (2007). Some topics in convolution-based spatial modeling. In Proceedings of the 56th Session of the International Statistical Institute.Lisbon, Portugal.
    • (2007) Some topics in convolution-based spatial modeling
    • Calder, C.A.1    Cressie, N.2
  • 9
    • 0004098957 scopus 로고
    • A handbook of Fourier theorems
    • Cambridge University Press, Cambridge, UK.
    • Champeney, D. C. (1987). A handbook of Fourier theorems. Cambridge University Press, Cambridge, UK.
    • (1987)
    • Champeney, D.C.1
  • 10
    • 0000168129 scopus 로고
    • Some statistical methods connected with series of events
    • Cox, D. R. (1955). Some statistical methods connected with series of events. J. Roy. Statist. Soc. Ser. B 17, 129-164.
    • (1955) J. Roy. Statist. Soc. Ser. B , vol.17 , pp. 129-164
    • Cox, D.R.1
  • 11
    • 42349084895 scopus 로고    scopus 로고
    • Bivariate binomial spatial modeling of Loa loa prevalence in tropical Africa
    • Crainiceanu, C. M., Diggle, P. & Rowlingson, B. (2008). Bivariate binomial spatial modeling of Loa loa prevalence in tropical Africa. J. Amer. Statist. Assoc. 103, 21-37.
    • (2008) J. Amer. Statist. Assoc. , vol.103 , pp. 21-37
    • Crainiceanu, C.M.1    Diggle, P.2    Rowlingson, B.3
  • 12
    • 0003548569 scopus 로고
    • Statistics for spatial data
    • Wiley, New York.
    • Cressie, N. (1993). Statistics for spatial data. Wiley, New York.
    • (1993)
    • Cressie, N.1
  • 13
    • 0442325070 scopus 로고    scopus 로고
    • Classes of nonseparable, spatiotemporal stationary covariance functions
    • Cressie, N. & Huang, H.-C. (1998). Classes of nonseparable, spatiotemporal stationary covariance functions. J. Amer. Statist. Assoc. 94, 1330-1340.
    • (1998) J. Amer. Statist. Assoc. , vol.94 , pp. 1330-1340
    • Cressie, N.1    Huang, H.2
  • 15
    • 0002220098 scopus 로고    scopus 로고
    • Estimating and modeling space-time correlation structures
    • De Cesare, L., Myers, D. & Posa, D. (2001). Estimating and modeling space-time correlation structures. Statist. Probab. Lett. 51, 9-14.
    • (2001) Statist. Probab. Lett. , vol.51 , pp. 9-14
    • De Cesare, L.1    Myers, D.2    Posa, D.3
  • 16
    • 78349236172 scopus 로고    scopus 로고
    • Space-time analysis using a general product-sum model
    • De Iaco, S., Myers, D. E. & Posa, D. (2001). Space-time analysis using a general product-sum model. Appl. Statist. 50, 221-241.
    • (2001) Appl. Statist. , vol.50 , pp. 221-241
    • De Iaco, S.1    Myers, D.E.2    Posa, D.3
  • 17
    • 34548724596 scopus 로고    scopus 로고
    • Model-based geostatistics
    • Springer-Verlag, New York.
    • Diggle, P. & Ribeiro, P. (2007). Model-based geostatistics. Springer-Verlag, New York.
    • (2007)
    • Diggle, P.1    Ribeiro, P.2
  • 18
    • 22344438843 scopus 로고    scopus 로고
    • Point process methodology for on-line spatio-temporal disease surveillance
    • Diggle, P., Rowlingson, B. & Su, T.-L. (2005). Point process methodology for on-line spatio-temporal disease surveillance. Environmetrics 16, 423-434.
    • (2005) Environmetrics , vol.16 , pp. 423-434
    • Diggle, P.1    Rowlingson, B.2    Su, T.3
  • 19
    • 0042401905 scopus 로고    scopus 로고
    • Spectral methods for nonstationary spatial processes
    • Fuentes, M. (2002). Spectral methods for nonstationary spatial processes. Biometrika 89, 197-210.
    • (2002) Biometrika , vol.89 , pp. 197-210
    • Fuentes, M.1
  • 20
    • 55449137956 scopus 로고    scopus 로고
    • SemiPar 1.0 users' manual
    • Ganguli, B. & Wand, M. P. (2005). SemiPar 1.0 users' manual.
    • (2005)
    • Ganguli, B.1    Wand, M.P.2
  • 21
    • 0035998830 scopus 로고    scopus 로고
    • Nonseparable, stationary covariance functions for space-time data
    • Gneiting, T. (2002). Nonseparable, stationary covariance functions for space-time data. J. Amer. Statist. Assoc. 97, 590-600.
    • (2002) J. Amer. Statist. Assoc. , vol.97 , pp. 590-600
    • Gneiting, T.1
  • 22
    • 0032422974 scopus 로고    scopus 로고
    • A process-convolution approach to modeling temperatures in the North Atlantic Ocean
    • Higdon, D. (1998). A process-convolution approach to modeling temperatures in the North Atlantic Ocean. J. Environ. Ecol. Stat. 5, 173-190.
    • (1998) J. Environ. Ecol. Stat. , vol.5 , pp. 173-190
    • Higdon, D.1
  • 23
    • 2942619617 scopus 로고    scopus 로고
    • Quantitative methods for current environmental issues
    • In, eds, C. W. Anderson, V. Barnett, P. C. Chatwin A. H. El-Shaarawi), Springer-Verlag, New York.
    • Higdon, D. (2002). Space and space-time modeling using process convolutions. In Quantitative methods for current environmental issues (eds C. W. Anderson, V. Barnett, P. C. Chatwin & A. H. El-Shaarawi), 37-56. Springer-Verlag, New York.
    • (2002) Space and space-time modeling using process convolutions , pp. 37-56
    • Higdon, D.1
  • 24
    • 0000439277 scopus 로고    scopus 로고
    • Bayesian statistics 6. Proceedings of the Sixth Valencia International Meeting
    • In, eds, J. M. Bernardo, J. O. Berger, A. P. Dawid A. F. M. Smith), Oxford University Press, Oxford, UK.
    • Higdon, D. M., Swall, J. & Kern, J. (1999). Non-stationary spatial modeling. In Bayesian statistics 6. Proceedings of the Sixth Valencia International Meeting (eds J. M. Bernardo, J. O. Berger, A. P. Dawid & A. F. M. Smith), 761-768. Oxford University Press, Oxford, UK.
    • (1999) Non-stationary spatial modeling , pp. 761-768
    • Higdon, D.M.1    Swall, J.2    Kern, J.3
  • 25
    • 0003430544 scopus 로고
    • Finding groups in data: an introduction to cluster analysis
    • Wiley, New York.
    • Kaufman, L. & Rousseeuw, P. J. (1990). Finding groups in data: an introduction to cluster analysis. Wiley, New York.
    • (1990)
    • Kaufman, L.1    Rousseeuw, P.J.2
  • 26
    • 0007192910 scopus 로고    scopus 로고
    • Bayesian process-convolution approaches to specifying spatial dependence structure
    • PhD thesis, Institute of Statistics and Decision Sciences, Duke University, Durham, NC.
    • Kern, J. (2000). Bayesian process-convolution approaches to specifying spatial dependence structure. PhD thesis, Institute of Statistics and Decision Sciences, Duke University, Durham, NC.
    • (2000)
    • Kern, J.1
  • 27
    • 17444426059 scopus 로고    scopus 로고
    • Efficient models for correlated data via convolutions of intrinsic processes
    • Lee, H. K. H., Higdon, D. M., Calder, C. A. & Holloman, C. H. (2005). Efficient models for correlated data via convolutions of intrinsic processes. Statist. Model. 5, 53-74.
    • (2005) Statist. Model. , vol.5 , pp. 53-74
    • Lee, H.K.H.1    Higdon, D.M.2    Calder, C.A.3    Holloman, C.H.4
  • 28
    • 0042208341 scopus 로고    scopus 로고
    • Families of spatio-temporal stationary covariance models
    • Ma, C. (2003). Families of spatio-temporal stationary covariance models. J. Statist. Plann. Inference 116, 489-501.
    • (2003) J. Statist. Plann. Inference , vol.116 , pp. 489-501
    • Ma, C.1
  • 29
    • 34248573628 scopus 로고    scopus 로고
    • Multivariate spatial modeling for geostatistical data using convolved covariance functions
    • Majumdar, A. & Gelfand, A. E. (2007). Multivariate spatial modeling for geostatistical data using convolved covariance functions. Math. Geol. 39, 225-245.
    • (2007) Math. Geol. , vol.39 , pp. 225-245
    • Majumdar, A.1    Gelfand, A.E.2
  • 30
    • 28944446259 scopus 로고    scopus 로고
    • Testing for separability of space-time covariances
    • Mitchell, M., Genton, M. G. & Gumpertz, M. (2005). Testing for separability of space-time covariances. Environmetrics 16, 819-831.
    • (2005) Environmetrics , vol.16 , pp. 819-831
    • Mitchell, M.1    Genton, M.G.2    Gumpertz, M.3
  • 32
    • 2542561950 scopus 로고    scopus 로고
    • Case studies in environmental statistics
    • In, eds, D. Nychka, W. W. Piegorsch L. H. Cox). Springer-Verlag, New York.
    • Nychka, D. W. & Saltzman, N. (1998). Design of air quality monitoring networks. In Case studies in environmental statistics (eds D. Nychka, W. W. Piegorsch & L. H. Cox). Springer-Verlag, New York.
    • (1998) Design of air quality monitoring networks
    • Nychka, D.W.1    Saltzman, N.2
  • 33
    • 4344662401 scopus 로고    scopus 로고
    • Gaussian cosimulation: modelling of the cross-covariance
    • Oliver, D. S. (2003). Gaussian cosimulation: modelling of the cross-covariance. Math. Geol. 35, 681-698.
    • (2003) Math. Geol. , vol.35 , pp. 681-698
    • Oliver, D.S.1
  • 34
    • 14944355575 scopus 로고    scopus 로고
    • Space-time covariance functions
    • Stein, M. L. (2005). Space-time covariance functions. J. Amer. Statist. Assoc. 100, 310-321.
    • (2005) J. Amer. Statist. Assoc. , vol.100 , pp. 310-321
    • Stein, M.L.1
  • 35
    • 0032525527 scopus 로고    scopus 로고
    • Constructing and fitting models for cokriging and multivariable spatial prediction
    • Ver Hoef, J. M. & Barry, R. P. (1998). Constructing and fitting models for cokriging and multivariable spatial prediction. J. Statist. Plann. Inference 69, 275-294.
    • (1998) J. Statist. Plann. Inference , vol.69 , pp. 275-294
    • Ver Hoef, J.M.1    Barry, R.P.2
  • 36
    • 0004161441 scopus 로고    scopus 로고
    • Multivariate geostatistics
    • Springer-Verlag, New York.
    • Wackernagel, H. (2003). Multivariate geostatistics. Springer-Verlag, New York.
    • (2003)
    • Wackernagel, H.1
  • 37
    • 0003610302 scopus 로고
    • Correlation theory of stationary and related random functions
    • Springer-Verlag, New York.
    • Yaglom, A. M. (1987). Correlation theory of stationary and related random functions. Springer-Verlag, New York.
    • (1987)
    • Yaglom, A.M.1
  • 38
    • 0004072262 scopus 로고    scopus 로고
    • An introduction to the theory of stationary random functions
    • Courier Dover Publications, New York.
    • Yaglom, A. M. (2004). An introduction to the theory of stationary random functions. Courier Dover Publications, New York.
    • (2004)
    • Yaglom, A.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.