메뉴 건너뛰기




Volumn 9, Issue , 2010, Pages 405-412

Online anomaly detection under adversarial impact

Author keywords

[No Author keywords available]

Indexed keywords

ANOMALY DETECTION METHODS; EXPERIMENTAL EVALUATION; ITS EFFICIENCIES; ONLINE ANOMALY DETECTION; SECURITY ANALYSIS; THEORETICAL BOUNDS;

EID: 84862299994     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (137)

References (21)
  • 2
    • 12244295760 scopus 로고    scopus 로고
    • Adversarial classification
    • ACM Press
    • N. Dalvi, P. Domingos, M. Sumit, and S. D. Verma. Adversarial classification. In In KDD, pages 99-108. ACM Press, 2004.
    • (2004) KDD , pp. 99-108
    • Dalvi, N.1    Domingos, P.2    Sumit, M.3    Verma, S.D.4
  • 4
    • 34547359214 scopus 로고    scopus 로고
    • Evading network anomaly detection systems: Formal reasoning and practical techniques
    • P. Fogla and W. Lee. Evading network anomaly detection systems: formal reasoning and practical techniques. In ACM Conference on Computer and Communications Security, pages 59-68, 2006.
    • (2006) ACM Conference on Computer and Communications Security , pp. 59-68
    • Fogla, P.1    Lee, W.2
  • 7
    • 84862272560 scopus 로고    scopus 로고
    • Security analysis of online centroid anomaly detection
    • University of California, Berkeley, Feb. CoRR abs/1003.0079
    • M. Kloft and P. Laskov. Security analysis of online centroid anomaly detection. Technical Report UCB/EECS-2010-22, EECS Department, University of California, Berkeley, Feb 2010. CoRR abs/1003.0079.
    • (2010) Technical Report UCB/EECS-2010-22, EECS Department
    • Kloft, M.1    Laskov, P.2
  • 8
    • 74049158178 scopus 로고    scopus 로고
    • A framework for quantitative security analysis of machine learning
    • D. Balfanz and J. Staddon, editors, ACM. ISBN 978-1-60558-781-3
    • P. Laskov and M. Kloft. A framework for quantitative security analysis of machine learning. In D. Balfanz and J. Staddon, editors, AISec, pages 1-4. ACM, 2009. ISBN 978-1-60558-781-3.
    • (2009) AISec , pp. 1-4
    • Laskov, P.1    Kloft, M.2
  • 10
    • 0036358995 scopus 로고    scopus 로고
    • The spectrum kernel: A string kernel for SVM protein classification
    • C. Leslie, E. Eskin, and W. Noble. The spectrum kernel: A string kernel for SVM protein classification. In Proc. Pacific Symp. Biocomputing, pages 564-575, 2002.
    • (2002) Proc. Pacific Symp. Biocomputing , pp. 564-575
    • Leslie, C.1    Eskin, E.2    Noble, W.3
  • 14
    • 33846910249 scopus 로고    scopus 로고
    • Language models for detection of unknown attacks in network traffic
    • K. Rieck and P. Laskov. Language models for detection of unknown attacks in network traffic. Journal in Computer Virology, 2(4):243-256, 2007.
    • (2007) Journal in Computer Virology , vol.2 , Issue.4 , pp. 243-256
    • Rieck, K.1    Laskov, P.2
  • 17
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • D. Tax and R. Duin. Support vector domain description. Pattern Recognition Letters, 20(11-13):1191-1199, 1999.
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1191-1199
    • Tax, D.1    Duin, R.2
  • 19
    • 0031478562 scopus 로고    scopus 로고
    • On nonparametric estimation of density level sets
    • A. Tsybakov. On nonparametric estimation of density level sets. Annals of Statistics, 25:948-969, 1997.
    • (1997) Annals of Statistics , vol.25 , pp. 948-969
    • Tsybakov, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.