메뉴 건너뛰기




Volumn 22, Issue 1, 2013, Pages 57-69

Shrinkage observed-to-expected ratios for robust and transparent large-scale pattern discovery

Author keywords

adverse drug reactions; exploratory analysis; pattern discovery; statistical shrinkage

Indexed keywords

ARTICLE; CONTINGENCY TABLE; CONTRAST; DATA BASE; HUMAN; LARGE SCALE PRODUCTION; LOGLINEAR MODEL; METHODOLOGY; POLICY; REGULATORY MECHANISM; RISK; RISK FACTOR; STATISTICAL SIGNIFICANCE; STRATIFIED SAMPLE;

EID: 84862216660     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280211403604     Document Type: Article
Times cited : (208)

References (23)
  • 2
    • 0038931405 scopus 로고    scopus 로고
    • Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system
    • DuMouchel W. Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system. Am Stat. 1999 ; 53: 177-202
    • (1999) Am Stat , vol.53 , pp. 177-202
    • Dumouchel, W.1
  • 3
    • 13444252680 scopus 로고    scopus 로고
    • Selective serotonin reuptake inhibitors in pregnant women and neonatal withdrawal syndrome: A database analysis
    • DOI 10.1016/S0140-6736(05)17865-9
    • Sanz EJ, De-las-Cuevas C, Kiuru A, Bate A, Edwards IR. Selective serotonin reuptake inhibitors in pregnant women and neonatal withdrawal syndrome: a database analysis. Lancet. 2005 ; 365: 482-487 (Pubitemid 40215730)
    • (2005) Lancet , vol.365 , Issue.9458 , pp. 482-487
    • Sanz, E.J.1    De-las-Cuevas, C.2    Kiuru, A.3    Bate, A.4    Edwards, R.5
  • 4
    • 50649083281 scopus 로고    scopus 로고
    • Abacavir and increased risk of myocardial infarction
    • Edwards IR, Bate A, Lindquist M. Abacavir and increased risk of myocardial infarction. Lancet. 2008 ; 372 (9641). 805-805
    • (2008) Lancet , vol.372 , Issue.9641 , pp. 805-805
    • Edwards, I.R.1    Bate, A.2    Lindquist, M.3
  • 5
    • 8744299420 scopus 로고    scopus 로고
    • Pattern discovery and detection: A unified statistical methodology
    • DOI 10.1080/0266476042000270518
    • Hand DJ, Bolton R. Pattern Discovery and Detection: A Unified Statistical Methodology. J Appl Stat. 2004 ; 31 (8). 885-924 (Pubitemid 39518784)
    • (2004) Journal of Applied Statistics , vol.31 , Issue.8 , pp. 885-924
    • Hand, D.J.1    Bolton, R.J.2
  • 7
    • 33750336301 scopus 로고    scopus 로고
    • Extending the methods used to screen the WHO drug safety database towards analysis of complex associations and improved accuracy for rare events
    • DOI 10.1002/sim.2473
    • Norén GN, Bate A, Orre R, Edwards IR. Extending the methods used to screen the WHO drug safety database towards analysis of complex associations and improved accuracy for rare events. Stat Med. 2006 ; 25 (21). 3740-3757 (Pubitemid 44613906)
    • (2006) Statistics in Medicine , vol.25 , Issue.21 , pp. 3740-3757
    • Noren, G.N.1    Bate, A.2    Orre, R.3    Edwards, I.R.4
  • 8
    • 48049111575 scopus 로고    scopus 로고
    • A statistical methodology for drug-drug interaction surveillance
    • Norén GN, Sundberg R, Bate A, Edwards IR. A statistical methodology for drug-drug interaction surveillance. Stat Med. 2008 ; 27 (16). 3057-3070
    • (2008) Stat Med , vol.27 , Issue.16 , pp. 3057-3070
    • Norén, G.N.1    Sundberg, R.2    Bate, A.3    Edwards, I.R.4
  • 10
    • 0035700740 scopus 로고    scopus 로고
    • Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports
    • DOI 10.1002/pds.677
    • Evans SJW, Waller PC, Davis S. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemio. Drug Saf. 2001 ; 10 (6). 483-486 (Pubitemid 34100774)
    • (2001) Pharmacoepidemiology and Drug Safety , vol.10 , Issue.6 , pp. 483-486
    • Evans, S.J.W.1    Waller, P.C.2    Davis, S.3
  • 12
    • 53849138066 scopus 로고    scopus 로고
    • VigiBase, the WHO global ICSR database system: Basic facts
    • Lindquist M. VigiBase, the WHO global ICSR database system: basic facts. Drug Inf J. 2008 ; 42: 409-419
    • (2008) Drug Inf J , vol.42 , pp. 409-419
    • Lindquist, M.1
  • 14
    • 53549088055 scopus 로고    scopus 로고
    • Adjustment for potential confounders in adverse drug reaction surveillance
    • Hopstadius J, Norén GN, Bate A, Edwards IR. Adjustment for potential confounders in adverse drug reaction surveillance. Drug Saf. 2008 ; 31 (11). 1035-1048
    • (2008) Drug Saf , vol.31 , Issue.11 , pp. 1035-1048
    • Hopstadius, J.1    Norén, G.N.2    Bate, A.3    Edwards, I.R.4
  • 16
    • 33847337428 scopus 로고    scopus 로고
    • Accounting for multiplicity in the evaluation of 'signals' obtained by data mining from spontaneous report adverse event databases
    • Gould AL. Accounting for multiplicity in the evaluation of 'signals' obtained by data mining from spontaneous report adverse event databases. Biometric J. 2007 ; 49 (1). 151-165
    • (2007) Biometric J , vol.49 , Issue.1 , pp. 151-165
    • Gould, A.L.1
  • 17
    • 34249653461 scopus 로고    scopus 로고
    • Discovering significant patterns
    • DOI 10.1007/s10994-007-5006-x
    • Webb GI. Discovering significant patterns. Mach Learn. 2007 ; 68 (1). 1-33 (Pubitemid 46828725)
    • (2007) Machine Learning , vol.68 , Issue.1 , pp. 1-33
    • Webb, G.I.1
  • 18
    • 77957018502 scopus 로고    scopus 로고
    • Pharmacovigilance data mining with methods based on false discovery rates: A comparative simulation study
    • Ahmed I, Thiessard F, Miremont-Salamé G, Bégaud B, Tubert-Bitter P. Pharmacovigilance data mining with methods based on false discovery rates: a comparative simulation study. Clin Pharmacol Ther. 2010 ; 88 (4). 492-498
    • (2010) Clin Pharmacol Ther , vol.88 , Issue.4 , pp. 492-498
    • Ahmed, I.1    Thiessard, F.2    Miremont-Salamé, G.3    Bégaud, B.4    Tubert-Bitter, P.5
  • 20
    • 34147207121 scopus 로고    scopus 로고
    • Duplicate detection in adverse drug reaction surveillance
    • DOI 10.1007/s10618-006-0052-8
    • Norén GN, Orre R, Bate A, Edwards IR. Duplicate detection in adverse drug reaction surveillance. Data Mining Knowledge Discov. 2007 ; 14: 305-328 (Pubitemid 46582604)
    • (2007) Data Mining and Knowledge Discovery , vol.14 , Issue.3 , pp. 305-328
    • Noren, G.N.1    Orre, R.2    Bate, A.3    Edwards, I.R.4
  • 22
    • 34548105186 scopus 로고    scopus 로고
    • Large-scale bayesian logistic regression for text categorization
    • DOI 10.1198/004017007000000245
    • Genkin A, Lewis DD, Madigan D. Large-scale Bayesian logistic regression for text categorization. Technometrics. 2007 ; 49 (3). 291-304 (Pubitemid 47292487)
    • (2007) Technometrics , vol.49 , Issue.3 , pp. 291-304
    • Genkin, A.1    Lewis, D.D.2    Madigan, D.3
  • 23
    • 78549296716 scopus 로고    scopus 로고
    • Large-scale regression-based pattern discovery: The example of screening the WHO global drug safety database
    • Caster O, Norén GN, Madigan D, Bate A. Large-scale regression-based pattern discovery: the example of screening the WHO global drug safety database. Stat Anal Data Mining. 2010 ; 3 (4). 197-208
    • (2010) Stat Anal Data Mining , vol.3 , Issue.4 , pp. 197-208
    • Caster, O.1    Norén, G.N.2    Madigan, D.3    Bate, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.