메뉴 건너뛰기




Volumn 56, Issue 11, 2012, Pages 3398-3414

A comparative study of Monte Carlo methods for efficient evaluation of marginal likelihood

Author keywords

Adaptive mixture of Student t distributions; Bayes factor; Bridge sampling; Importance sampling; Marginal likelihood

Indexed keywords

BAYES FACTOR; COMPARATIVE ANALYSIS; COMPARATIVE STUDIES; COMPUTATIONALLY EFFICIENT; ESTIMATION STRATEGIES; GARCH MODELS; MARGINAL LIKELIHOOD; MONTE CARLO SIMULATION METHODS; NON-LINEAR REGRESSION; POSTERIOR DISTRIBUTIONS; SIMULATION TECHNIQUE; STANDARD ERRORS; STRATEGIC CHOICE; STUDENT-T DISTRIBUTION;

EID: 84862009381     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2010.09.001     Document Type: Article
Times cited : (40)

References (41)
  • 2
    • 58549088196 scopus 로고    scopus 로고
    • Adaptive mixture of Student-t distributions as a flexible candidate distribution for efficient simulation: The R package AdMit
    • URL
    • D. Ardia, L.F. Hoogerheide, and H.K. Van Dijk Adaptive mixture of Student-t distributions as a flexible candidate distribution for efficient simulation: the R package AdMit Journal of Statistical Software 29 3 2009 1 32 URL: http://www.jstatsoft.org/v29/i03
    • (2009) Journal of Statistical Software , vol.29 , Issue.3 , pp. 1-32
    • Ardia, D.1    Hoogerheide, L.F.2    Van Dijk, H.K.3
  • 3
    • 84862013006 scopus 로고    scopus 로고
    • AdMit: Adaptive mixtures of Student-t distributions
    • D. Ardia, L.F. Hoogerheide, and H.K. Van Dijk AdMit: adaptive mixtures of Student-t distributions The R Journal 1 1 2009 25 30
    • (2009) The R Journal , vol.1 , Issue.1 , pp. 25-30
    • Ardia, D.1    Hoogerheide, L.F.2    Van Dijk, H.K.3
  • 5
    • 33750985047 scopus 로고    scopus 로고
    • Bayesian estimation of the Gaussian mixture GARCH model
    • M.C. Ausín, and P. Galeano Bayesian estimation of the Gaussian mixture GARCH model Computational Statistics & Data Analysis 51 5 2007 2636 2652
    • (2007) Computational Statistics & Data Analysis , vol.51 , Issue.5 , pp. 2636-2652
    • Ausín, M.C.1    Galeano, P.2
  • 7
    • 4644327994 scopus 로고    scopus 로고
    • Adaptive radial-based direction sampling: Some flexible and robust Monte Carlo integration methods
    • L. Bauwens, C.S. Bos, H.K. Van Dijk, and R.D. Van Oest Adaptive radial-based direction sampling: some flexible and robust Monte Carlo integration methods Journal of Econometrics 123 2 2004 201 225
    • (2004) Journal of Econometrics , vol.123 , Issue.2 , pp. 201-225
    • Bauwens, L.1    Bos, C.S.2    Van Dijk, H.K.3    Van Oest, R.D.4
  • 12
    • 34248174989 scopus 로고    scopus 로고
    • Forecast combination and model averaging using predictive measures
    • J. Eklund, and S. Karlsson Forecast combination and model averaging using predictive measures Econometric Reviews 26 2-4 2007 329 363
    • (2007) Econometric Reviews , vol.26 , Issue.24 , pp. 329-363
    • Eklund, J.1    Karlsson, S.2
  • 13
    • 1842815959 scopus 로고    scopus 로고
    • Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models
    • S. Frühwirth-Schnatter Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models Journal of the American Statistical Association 96 453 2001 194 209
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.453 , pp. 194-209
    • Frühwirth-Schnatter, S.1
  • 14
    • 33750369868 scopus 로고    scopus 로고
    • Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques
    • S. Frühwirth-Schnatter Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques Econometrics Journal 7 1 2004 143 167
    • (2004) Econometrics Journal , vol.7 , Issue.1 , pp. 143-167
    • Frühwirth-Schnatter, S.1
  • 15
  • 17
    • 0000736067 scopus 로고    scopus 로고
    • Simulating normalizing constants: From importance sampling to bridge sampling to path sampling
    • A. Gelman, and X.L. Meng Simulating normalizing constants: from importance sampling to bridge sampling to path sampling Statistical Science 13 2 1998 163 185
    • (1998) Statistical Science , vol.13 , Issue.2 , pp. 163-185
    • Gelman, A.1    Meng, X.L.2
  • 19
    • 0001667705 scopus 로고
    • Bayesian inference in econometric models using Monte Carlo integration
    • J. Geweke Bayesian inference in econometric models using Monte Carlo integration Econometrica 1989 1317 1339
    • (1989) Econometrica , pp. 1317-1339
    • Geweke, J.1
  • 20
    • 85071345322 scopus 로고    scopus 로고
    • Using simulation methods for Bayesian econometric models: Inference, development, and communication
    • J. Geweke Using simulation methods for Bayesian econometric models: inference, development, and communication Econometric Reviews 18 1 1999 1 73
    • (1999) Econometric Reviews , vol.18 , Issue.1 , pp. 1-73
    • Geweke, J.1
  • 21
    • 84972511893 scopus 로고
    • Practical Markov chain Monte Carlo
    • C.J. Geyer Practical Markov chain Monte Carlo Statistical Science 1992 473 483
    • (1992) Statistical Science , pp. 473-483
    • Geyer, C.J.1
  • 23
    • 0442312140 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods for computing Bayes factors
    • C. Han, and B.P. Carlin Markov chain Monte Carlo methods for computing Bayes factors Journal of the American Statistical Association 96 455 2001 1122 1132
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.455 , pp. 1122-1132
    • Han, C.1    Carlin, B.P.2
  • 24
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • W.K. Hastings Monte Carlo sampling methods using Markov chains and their applications Biometrika 57 1 1970 97 109
    • (1970) Biometrika , vol.57 , Issue.1 , pp. 97-109
    • Hastings, W.K.1
  • 25
    • 34248561402 scopus 로고    scopus 로고
    • On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks
    • L.F. Hoogerheide, J.F. Kaashoek, and H.K. Van Dijk On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: an application of flexible sampling methods using neural networks Journal of Econometrics 139 1 2007 154 180
    • (2007) Journal of Econometrics , vol.139 , Issue.1 , pp. 154-180
    • Hoogerheide, L.F.1    Kaashoek, J.F.2    Van Dijk, H.K.3
  • 26
    • 4644255590 scopus 로고
    • SISAM and MIXIN: Two algorithms for the computation of posterior moments and densities using Monte Carlo integration
    • J.P. Hop, and H.K. Van Dijk SISAM and MIXIN: two algorithms for the computation of posterior moments and densities using Monte Carlo integration Computational Economics 5 3 1992 183 220
    • (1992) Computational Economics , vol.5 , Issue.3 , pp. 183-220
    • Hop, J.P.1    Van Dijk, H.K.2
  • 28
    • 0002662247 scopus 로고
    • Bayesian estimates of equation system parameters: An application of integration by Monte Carlo
    • T. Kloek, and H.K. Van Dijk Bayesian estimates of equation system parameters: an application of integration by Monte Carlo Econometrica 46 1 1978 1 19
    • (1978) Econometrica , vol.46 , Issue.1 , pp. 1-19
    • Kloek, T.1    Van Dijk, H.K.2
  • 31
    • 21444451325 scopus 로고    scopus 로고
    • Simulating ratios of normalizing constants via a simple identity: A theoretical exploration
    • X.L. Meng, and W.H. Wong Simulating ratios of normalizing constants via a simple identity: a theoretical exploration Statistica Sinica 6 1996 831 860
    • (1996) Statistica Sinica , vol.6 , pp. 831-860
    • Meng, X.L.1    Wong, W.H.2
  • 33
    • 33748438405 scopus 로고    scopus 로고
    • A comparison of Bayesian model selection based on MCMC with an application to GARCH-type models
    • T. Miazhynskaia, and G. Dorffner A comparison of Bayesian model selection based on MCMC with an application to GARCH-type models Statistical Papers 47 4 2006 525 549
    • (2006) Statistical Papers , vol.47 , Issue.4 , pp. 525-549
    • Miazhynskaia, T.1    Dorffner, G.2
  • 34
    • 3142761519 scopus 로고    scopus 로고
    • Bridge estimation of the probability density at a point
    • A. Mira, and G. Nicholls Bridge estimation of the probability density at a point Statistica Sinica 14 2 2004 603 612
    • (2004) Statistica Sinica , vol.14 , Issue.2 , pp. 603-612
    • Mira, A.1    Nicholls, G.2
  • 35
    • 0000706085 scopus 로고
    • A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix
    • W.K. Newey, and K.D. West A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix Econometrica 55 3 1987 703 708
    • (1987) Econometrica , vol.55 , Issue.3 , pp. 703-708
    • Newey, W.K.1    West, K.D.2
  • 37
    • 0000940729 scopus 로고
    • Facilitating the Gibbs sampler: The Gibbs stopper and the Griddy-Gibbs sampler
    • C. Ritter, and M.A. Tanner Facilitating the Gibbs sampler: the Gibbs stopper and the Griddy-Gibbs sampler Journal of the American Statistical Association 87 419 1992 861 868
    • (1992) Journal of the American Statistical Association , vol.87 , Issue.419 , pp. 861-868
    • Ritter, C.1    Tanner, M.A.2
  • 38
    • 5344244656 scopus 로고    scopus 로고
    • R Development Core Team R Foundation for Statistical Computing, Vienna, Austria. URL
    • R Development Core Team (2008). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org.
    • (2008) R: A Language and Environment for Statistical Computing
  • 39
    • 84897077786 scopus 로고    scopus 로고
    • Some remarks on the simulation revolution in Bayesian econometric inference
    • H.K. Van Dijk Some remarks on the simulation revolution in Bayesian econometric inference Econometric Reviews 18 1 1999 105 112
    • (1999) Econometric Reviews , vol.18 , Issue.1 , pp. 105-112
    • Van Dijk, H.K.1
  • 40
    • 0000897731 scopus 로고
    • Further experience in Bayesian analysis using Monte Carlo integration
    • H.K. Van Dijk, and T. Kloek Further experience in Bayesian analysis using Monte Carlo integration Journal of Econometrics 14 3 1980 307 328
    • (1980) Journal of Econometrics , vol.14 , Issue.3 , pp. 307-328
    • Van Dijk, H.K.1    Kloek, T.2
  • 41
    • 0031037819 scopus 로고    scopus 로고
    • Density estimation through convex combinations of densities: Approximation and estimation bounds
    • A.J. Zeevi, and R. Meir Density estimation through convex combinations of densities: approximation and estimation bounds Neural Networks 10 1 1997 99 109
    • (1997) Neural Networks , vol.10 , Issue.1 , pp. 99-109
    • Zeevi, A.J.1    Meir, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.