메뉴 건너뛰기




Volumn 45, Issue 10, 2012, Pages 3751-3767

Inconsistency-based active learning for support vector machines

Author keywords

Active learning; Concept learning; Inconsistency; Sample selection; Support vector machine

Indexed keywords

ACTIVE LEARNING; ADDITIONAL KNOWLEDGE; CLASSIFICATION TASKS; CONCEPT LEARNING; DATA COMPLEXITY; DATA REDUNDANCY; DATA SETS; GENERALIZATION CAPABILITY; INCONSISTENCY; LEARNING EFFICIENCY; LEARNING PROCESS; POOL-BASED; SAMPLE SELECTION; VERSION SPACE;

EID: 84861810043     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2012.03.022     Document Type: Article
Times cited : (34)

References (52)
  • 1
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • D. Cohn, L. Atlas, and R. Ladner Improving generalization with active learning Machine Learning 15 2 1994 201 221
    • (1994) Machine Learning , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 3
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong, and D. Koller Support vector machine active learning with applications to text classification Journal of Machine Learning Research 2 2002 45 66
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 4
    • 33749445935 scopus 로고    scopus 로고
    • Active learning for image retrieval with Co-SVM
    • J. Cheng, and K. Wang Active learning for image retrieval with Co-SVM Pattern Recognition 40 1 2007 330 334
    • (2007) Pattern Recognition , vol.40 , Issue.1 , pp. 330-334
    • Cheng, J.1    Wang, K.2
  • 5
    • 42749095524 scopus 로고    scopus 로고
    • SVM-based active feedback in image retrieval using clustering and unlabeled data
    • R. Liu, Y. Wang, T. Baba, D. Masumoto, and S. Nagata SVM-based active feedback in image retrieval using clustering and unlabeled data Pattern Recognition 41 8 2008 2645 2655
    • (2008) Pattern Recognition , vol.41 , Issue.8 , pp. 2645-2655
    • Liu, R.1    Wang, Y.2    Baba, T.3    Masumoto, D.4    Nagata, S.5
  • 6
    • 70349307199 scopus 로고    scopus 로고
    • Interactive localized content based image retrieval with multiple-instance active learning
    • D. Zhang, F. Wang, Z. Shi, and C. Zhang Interactive localized content based image retrieval with multiple-instance active learning Pattern Recognition 43 2 2010 478 484
    • (2010) Pattern Recognition , vol.43 , Issue.2 , pp. 478-484
    • Zhang, D.1    Wang, F.2    Shi, Z.3    Zhang, C.4
  • 8
    • 33746916789 scopus 로고    scopus 로고
    • Support vector machine active learning for music retrieval
    • M. Mandel, G. Poliner, and D. Ellis Support vector machine active learning for music retrieval Multimedia Systems 12 1 2006 3 13
    • (2006) Multimedia Systems , vol.12 , Issue.1 , pp. 3-13
    • Mandel, M.1    Poliner, G.2    Ellis, D.3
  • 9
    • 0000710299 scopus 로고
    • Queries and concept learning
    • D. Angluin Queries and concept learning Machine Learning 2 4 1988 319 342
    • (1988) Machine Learning , vol.2 , Issue.4 , pp. 319-342
    • Angluin, D.1
  • 10
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Y. Freund, H. Seung, E. Shamir, and N. Tishby Selective sampling using the query by committee algorithm Machine Learning 28 2 1997 133 168
    • (1997) Machine Learning , vol.28 , Issue.2 , pp. 133-168
    • Freund, Y.1    Seung, H.2    Shamir, E.3    Tishby, N.4
  • 14
    • 67349146515 scopus 로고    scopus 로고
    • Pool-based active learning in approximate linear regression
    • M. Sugiyama, and S. Nakajima Pool-based active learning in approximate linear regression Machine Learning 75 3 2009 249 274
    • (2009) Machine Learning , vol.75 , Issue.3 , pp. 249-274
    • Sugiyama, M.1    Nakajima, S.2
  • 17
    • 68549132506 scopus 로고    scopus 로고
    • Batch mode active learning with applications to text categorization and image retrieval
    • S. Hoi, R. Jin, and M. Lyu Batch mode active learning with applications to text categorization and image retrieval IEEE Transactions on Knowledge and Data Engineering 21 9 2009 1233 1248
    • (2009) IEEE Transactions on Knowledge and Data Engineering , vol.21 , Issue.9 , pp. 1233-1248
    • Hoi, S.1    Jin, R.2    Lyu, M.3
  • 19
    • 1242352526 scopus 로고    scopus 로고
    • Selective sampling for nearest neighbor classifiers
    • M. Lindenbaum, S. Markovitch, and D. Rusakov Selective sampling for nearest neighbor classifiers Machine Learning 54 2 2004 125 152
    • (2004) Machine Learning , vol.54 , Issue.2 , pp. 125-152
    • Lindenbaum, M.1    Markovitch, S.2    Rusakov, D.3
  • 26
    • 79959359928 scopus 로고    scopus 로고
    • Active learning paradigms for CBIR systems based on optimum-path forest classification
    • A. Tavares da Silva, A. Xavier Falcão, and L. Pini Magalhães Active learning paradigms for CBIR systems based on optimum-path forest classification Pattern Recognition 44 12 2011 2971 2978
    • (2011) Pattern Recognition , vol.44 , Issue.12 , pp. 2971-2978
    • Tavares Da Silva, A.1    Xavier Falcão, A.2    Pini Magalhães, L.3
  • 27
    • 84859075572 scopus 로고    scopus 로고
    • Semantic-gap oriented active learning for multi-label image annotation
    • J. Tang, Z. Zha, D. Tao, C. Tat-Seng, Semantic-gap oriented active learning for multi-label image annotation, IEEE Transactions on Image Processing 21 (4) (2012) 2354-2360.
    • (2012) IEEE Transactions on Image Processing , vol.21 , Issue.4 , pp. 2354-2360
    • Tang, J.1    Zha, Z.2    Tao, D.3    Tat-Seng, C.4
  • 32
    • 69549086366 scopus 로고    scopus 로고
    • Two-dimensional multilabel active learning with an efficient online adaptation model for image classification
    • G. Qi, X. Hua, Y. Rui, J. Tang, and H. Zhang Two-dimensional multilabel active learning with an efficient online adaptation model for image classification IEEE Transactions on Pattern Analysis and Machine Intelligence 31 10 2009 1880 1897
    • (2009) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.31 , Issue.10 , pp. 1880-1897
    • Qi, G.1    Hua, X.2    Rui, Y.3    Tang, J.4    Zhang, H.5
  • 33
    • 79958786327 scopus 로고    scopus 로고
    • A novel multi-view learning developed from single-view patterns
    • Z. Wang, S. Chen, and D. Gao A novel multi-view learning developed from single-view patterns Pattern Recognition 44 10-11 2011 2395 2413
    • (2011) Pattern Recognition , vol.44 , Issue.1011 , pp. 2395-2413
    • Wang, Z.1    Chen, S.2    Gao, D.3
  • 34
    • 78650197593 scopus 로고    scopus 로고
    • Multiple-view multiple-learner active learning
    • Q. Zhang, and S. Sun Multiple-view multiple-learner active learning Pattern Recognition 43 9 2010 3113 3119
    • (2010) Pattern Recognition , vol.43 , Issue.9 , pp. 3113-3119
    • Zhang, Q.1    Sun, S.2
  • 42
    • 33750506073 scopus 로고    scopus 로고
    • An improved incremental training algorithm for support vector machines using active query
    • S. Cheng, and F. Shih An improved incremental training algorithm for support vector machines using active query Pattern Recognition 40 3 2007 964 971
    • (2007) Pattern Recognition , vol.40 , Issue.3 , pp. 964-971
    • Cheng, S.1    Shih, F.2
  • 43
    • 79958839831 scopus 로고    scopus 로고
    • Active learning with adaptive regularization
    • Z. Wang, S. Yan, and C. Zhang Active learning with adaptive regularization Pattern Recognition 44 10-11 2011 2375 2383
    • (2011) Pattern Recognition , vol.44 , Issue.1011 , pp. 2375-2383
    • Wang, Z.1    Yan, S.2    Zhang, C.3
  • 44
    • 79958847551 scopus 로고    scopus 로고
    • SALSAS: Sub-linear active learning strategy with approximate k-NN search
    • D. Gorisse, M. Cord, and F. Precioso SALSAS: Sub-linear active learning strategy with approximate k-NN search Pattern Recognition 44 10-11 2011 2343 2357
    • (2011) Pattern Recognition , vol.44 , Issue.1011 , pp. 2343-2357
    • Gorisse, D.1    Cord, M.2    Precioso, F.3
  • 46
    • 34249707478 scopus 로고    scopus 로고
    • On linear separability of data sets in feature space
    • D. Chen, Q. He, and X. Wang On linear separability of data sets in feature space Neurocomputing 70 13-15 2007 2441 2448
    • (2007) Neurocomputing , vol.70 , Issue.1315 , pp. 2441-2448
    • Chen, D.1    He, Q.2    Wang, X.3
  • 48
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner Gradient-based learning applied to document recognition Proceedings of the IEEE 86 11 1998 2278 2324
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 50
    • 0033400675 scopus 로고    scopus 로고
    • Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables
    • J. Blackard, and D. Dean Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables Computers and Electronics in Agriculture 24 3 1999 131 152
    • (1999) Computers and Electronics in Agriculture , vol.24 , Issue.3 , pp. 131-152
    • Blackard, J.1    Dean, D.2
  • 52
    • 46849114555 scopus 로고    scopus 로고
    • Application of distributed SVM architectures in classifying forest data cover types
    • M. Trebar, and N. Steele Application of distributed SVM architectures in classifying forest data cover types Computers and Electronics in Agriculture 63 2 2008 119 130
    • (2008) Computers and Electronics in Agriculture , vol.63 , Issue.2 , pp. 119-130
    • Trebar, M.1    Steele, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.