메뉴 건너뛰기




Volumn 32, Issue , 2012, Pages 275-284

Application of growing hierarchical SOM for visualisation of network forensics traffic data

Author keywords

Data clustering; Data visualisation; Feature extraction; Hierarchical self organisation; Network forensics

Indexed keywords

DATA CLUSTERING; DATA MINING APPLICATIONS; DIGITAL CRIME; DIGITAL EVIDENCE; DIGITAL INVESTIGATION; HIERARCHICAL ARCHITECTURES; HIGH VARIABILITY; INPUT DATAS; NETWORK ENVIRONMENTS; NETWORK FORENSICS; NETWORK TRAFFIC; QUALITATIVE FEATURES; QUANTITATIVE FEATURES; SELF-ORGANISATION; SELF-ORGANISING MAPS; TRAFFIC DATA;

EID: 84861766306     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2012.02.021     Document Type: Article
Times cited : (30)

References (29)
  • 1
    • 33845527302 scopus 로고    scopus 로고
    • Dealing with terabyte data sets in digital investigations
    • Springer, Boston, M. Pollitt, S. Shenoi (Eds.) Advances in digital forensics
    • Beebe N., Clark J. Dealing with terabyte data sets in digital investigations. IFIP International Federation for Information Processing 2005, Vol. 194:3-16. Springer, Boston. M. Pollitt, S. Shenoi (Eds.).
    • (2005) IFIP International Federation for Information Processing , vol.194 , pp. 3-16
    • Beebe, N.1    Clark, J.2
  • 2
    • 3042852281 scopus 로고    scopus 로고
    • Network traffic as a source of evidence: tool strengths, weaknesses, and future needs
    • Casey E. Network traffic as a source of evidence: tool strengths, weaknesses, and future needs. Digital Investigation 2004, 1:28-43.
    • (2004) Digital Investigation , vol.1 , pp. 28-43
    • Casey, E.1
  • 5
    • 33748579887 scopus 로고    scopus 로고
    • The use of self-organising maps for anomalous behaviour detection in a digital investigation
    • Fei B.K.L., Eloff J.H.P., Olivier M.S., Venter H.S. The use of self-organising maps for anomalous behaviour detection in a digital investigation. Forensic Science International 2006, 162:33-37.
    • (2006) Forensic Science International , vol.162 , pp. 33-37
    • Fei, B.K.L.1    Eloff, J.H.P.2    Olivier, M.S.3    Venter, H.S.4
  • 7
    • 23044533360 scopus 로고    scopus 로고
    • Self-organising map for data imputation and correction in surveys
    • Fessant F., Midenet S. Self-organising map for data imputation and correction in surveys. Neural Computing and Applications 2002, 10:300-310.
    • (2002) Neural Computing and Applications , vol.10 , pp. 300-310
    • Fessant, F.1    Midenet, S.2
  • 8
    • 33750126257 scopus 로고
    • Growing grid-a self-organizing network with constant neighborhood range and adaptation strength
    • Fritzke B. Growing grid-a self-organizing network with constant neighborhood range and adaptation strength. Neural Processing Letters 1995, 2:9-13.
    • (1995) Neural Processing Letters , vol.2 , pp. 9-13
    • Fritzke, B.1
  • 9
    • 84861772735 scopus 로고    scopus 로고
    • Guidance Software Inc.
    • (2005). Guidance Software Inc. http://www.guidancesoftware.com.
    • (2005)
  • 13
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics 1982, 43:59-69.
    • (1982) Biological Cybernetics , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 17
    • 1542492748 scopus 로고    scopus 로고
    • Identifying significant features for network forensic analysis using artificial intelligent techniques
    • Mukkamala S., Sung A.H. Identifying significant features for network forensic analysis using artificial intelligent techniques. International Journal of Digital Evidence 2003, 1.
    • (2003) International Journal of Digital Evidence , vol.1
    • Mukkamala, S.1    Sung, A.H.2
  • 18
    • 80054756999 scopus 로고    scopus 로고
    • Visualisation of network forensics traffic data with a self-organising map for qualitative features
    • In Neural networks (IJCNN), The 2011 international joint conference on
    • Palomo, E., North, J., Elizondo, D., Luque, R., & Watson, T. (2011). Visualisation of network forensics traffic data with a self-organising map for qualitative features. In Neural networks (IJCNN), The 2011 international joint conference on (pp. 1740-1747).
    • (2011) , pp. 1740-1747
    • Palomo, E.1    North, J.2    Elizondo, D.3    Luque, R.4    Watson, T.5
  • 19
    • 80054722765 scopus 로고    scopus 로고
    • Forensic examination of log files. Master's Thesis Informatics and Mathematical Modelling
    • Building 321. DK-2800 Kgs. Lyngby. Supervised by Assoc. Prof. Robin Sharp.
    • Petersen, J.P. (2005) Forensic examination of log files. Master's Thesis Informatics and Mathematical Modelling. Technical University of Denmark DTU Richard Petersens Plads. Building 321. DK-2800 Kgs. Lyngby. Supervised by Assoc. Prof. Robin Sharp.
    • (2005) Technical University of Denmark DTU Richard Petersens Plads
    • Petersen, J.P.1
  • 20
    • 0036859375 scopus 로고    scopus 로고
    • The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data
    • Rauber A., Merkl D., Dittenbach M. The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data. IEEE Transactions on Neural Networks 2002, 13:1331-1341.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 1331-1341
    • Rauber, A.1    Merkl, D.2    Dittenbach, M.3
  • 23
    • 0003321511 scopus 로고    scopus 로고
    • Analysis of incomplete multivariate data
    • Chapman and Hall, London, New York
    • Schafer J.L. Analysis of incomplete multivariate data. Monographs on statistics and applied probability 1997, 72. Chapman and Hall, London, New York.
    • (1997) Monographs on statistics and applied probability , vol.72
    • Schafer, J.L.1
  • 24
    • 0033295914 scopus 로고    scopus 로고
    • Intrusion detection systems as evidence
    • Sommer P. Intrusion detection systems as evidence. Computer Networks 1999, 31:2477-2487.
    • (1999) Computer Networks , vol.31 , pp. 2477-2487
    • Sommer, P.1
  • 25
    • 84861763833 scopus 로고    scopus 로고
    • Technology Pathways LLC.
    • (2004). Technology Pathways LLC. http://www.techpathways.com.
    • (2004)
  • 27
    • 38049168357 scopus 로고    scopus 로고
    • Som-based data visualization methods
    • Vesanto J. Som-based data visualization methods. Intelligent Data Analysis 1999, 3:111-126.
    • (1999) Intelligent Data Analysis , vol.3 , pp. 111-126
    • Vesanto, J.1
  • 29
    • 0036789789 scopus 로고    scopus 로고
    • Data visualisation and manifold mapping using the visom
    • Yin H. Data visualisation and manifold mapping using the visom. Neural Networks 2002, 15:1005-1016.
    • (2002) Neural Networks , vol.15 , pp. 1005-1016
    • Yin, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.