메뉴 건너뛰기




Volumn 5762 LNCS, Issue PART 2, 2009, Pages 474-481

A fuzzy region-based hidden Markov model for partial-volume classification in brain MRI

Author keywords

[No Author keywords available]

Indexed keywords

HIDDEN MARKOV MODELS; ITERATIVE METHODS; MAGNETIC RESONANCE; MAGNETIC RESONANCE IMAGING; MEAN SQUARE ERROR; MEDICAL COMPUTING;

EID: 84861657351     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-04271-3_58     Document Type: Conference Paper
Times cited : (5)

References (16)
  • 2
    • 0033882275 scopus 로고    scopus 로고
    • Image classification by a two dimensional hidden Markov model
    • Li, J., Najmi, A., Gray, R.M.: Image classification by a two dimensional hidden Markov model. IEEE Trans. Signal Proc. 48(2), 517-533 (2000)
    • (2000) IEEE Trans. Signal Proc. , vol.48 , Issue.2 , pp. 517-533
    • Li, J.1    Najmi, A.2    Gray, R.M.3
  • 3
    • 33747089920 scopus 로고    scopus 로고
    • Hidden Markov models-based 3D MRI brain segmentation
    • DOI 10.1016/j.imavis.2006.03.001, PII S0262885606001107
    • Ibrahim, M., John, N., Kabuka, M., Younis, A.: Hidden Markov models-based 3D MRI brain segmentation. Image and Vision Computing 24, 1065-1079 (2006) (Pubitemid 44219063)
    • (2006) Image and Vision Computing , vol.24 , Issue.10 , pp. 1065-1079
    • Ibrahim, M.1    John, N.2    Kabuka, M.3    Younis, A.4
  • 4
    • 33745590884 scopus 로고    scopus 로고
    • A comp. efficient approach to the estimation of two- and three-dimensional hidden Markov models
    • Joshi, D., Li, J., Wang, J.Z.: A comp. efficient approach to the estimation of two- and three-dimensional hidden Markov models. IEEE Trans. Image Proc. 15(7), 1871-1886 (2006)
    • (2006) IEEE Trans. Image Proc. , vol.15 , Issue.7 , pp. 1871-1886
    • Joshi, D.1    Li, J.2    Wang, J.Z.3
  • 6
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
    • Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imag. 20(1), 45-57 (2001)
    • (2001) IEEE Trans. Med. Imag. , vol.20 , Issue.1 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3
  • 7
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • with discussion
    • Besag, J.: On the statistical analysis of dirty pictures (with discussion). J. of Royal Statist. Soc., Ser.B 48(3), 259-302 (1986)
    • (1986) J. of Royal Statist. Soc., Ser.B , vol.48 , Issue.3 , pp. 259-302
    • Besag, J.1
  • 9
    • 33750129298 scopus 로고    scopus 로고
    • Convergent tree-reweighted message passing for energy minimization
    • Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1568-1583 (2006)
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.10 , pp. 1568-1583
    • Kolmogorov, V.1
  • 10
    • 0022594196 scopus 로고
    • An intro. to hidden Markov model
    • Rabiner, L.R.: An intro. to hidden Markov model. In: IEEE ASSP Magazine, pp. 4-16 (1986)
    • (1986) IEEE ASSP Magazine , pp. 4-16
    • Rabiner, L.R.1
  • 11
    • 0027659237 scopus 로고
    • Quantification of MR brain images by mixture density and partial volume modeling
    • Santago, P., Gage, H.D.: Quantification of MR brain images by mixture density and partial volume modeling. IEEE Trans. Med. Imag. 12(3), 566-574 (1993)
    • (1993) IEEE Trans. Med. Imag. , vol.12 , Issue.3 , pp. 566-574
    • Santago, P.1    Gage, H.D.2
  • 12
    • 0037255814 scopus 로고    scopus 로고
    • A unifying framework for partial volume segmentation of brain MR images
    • Van Leemput, K.: A unifying framework for partial volume segmentation of brain MR images. IEEE Trans. Med. Imag. 22(1), 105-119 (2003)
    • (2003) IEEE Trans. Med. Imag. , vol.22 , Issue.1 , pp. 105-119
    • Van Leemput, K.1
  • 13
    • 54449096064 scopus 로고    scopus 로고
    • Unifying framework for multimodal brain MRI segmentation based on hidden Markov chains
    • Bricq, S., Collet, C., Armspach, J.P.: Unifying framework for multimodal brain MRI segmentation based on hidden Markov chains. Medical Image Analysis 12, 639-652 (2008)
    • (2008) Medical Image Analysis , vol.12 , pp. 639-652
    • Bricq, S.1    Collet, C.2    Armspach, J.P.3
  • 14
    • 0026220222 scopus 로고
    • Partial volume tissue classification of multichannel magnetic resonance images - A mixel model
    • Choi, H.S., Haynor, D.R., Kim, Y.: Partial volume tissue classification of multichannel magnetic resonance images - a mixel model. IEEE TMI 10(3), 395-407 (1991)
    • (1991) IEEE TMI , vol.10 , Issue.3 , pp. 395-407
    • Choi, H.S.1    Haynor, D.R.2    Kim, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.