메뉴 건너뛰기




Volumn 8, Issue 2, 2012, Pages

Image label completion by pursuing contextual decomposability

Author keywords

Image annotation; Image label completion; Label ranking; Multilabel classification

Indexed keywords

DECOMPOSABILITY; IMAGE ANNOTATION; IMAGE DATASETS; IMAGE FEATURES; IMAGE REPRESENTATIONS; INTRA-CLASS VARIATION; MULTI-LABEL; RANKING ALGORITHM;

EID: 84861612612     PISSN: 15516857     EISSN: 15516865     Source Type: Journal    
DOI: 10.1145/2168996.2169001     Document Type: Article
Times cited : (14)

References (38)
  • 3
    • 0043278893 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • BELKIN, M. AND NIYOGI, P. 2001. Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv. Neural Inform. Process. Syst.
    • (2001) Adv. Neural Inform. Process. Syst.
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 3042597440 scopus 로고    scopus 로고
    • Learning multilabel scene classification
    • BOUTELL, M., LUO, J., SHEN, X., AND BROWN, C. 2004. Learning multilabel scene classification. Pattern Recog. 37, 9, 1757-1771.
    • (2004) Pattern Recog. , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 8
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • FAN, R., CHEN, P., AND LIN, C. 2005. Working set selection using the second order information for training svm. J. Mach. Learn. Resear. 6, 1889-1918. (Pubitemid 41798130)
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 9
    • 7444230008 scopus 로고    scopus 로고
    • Discriminative Methods for Multi-labeled Classification
    • Advances in Knowledge Discovery and Data Mining
    • GODBOLE, S. AND SARAWAGI, S. 2004. Discriminative methods for multi-labeled classification. In Advances in Knowledge Discovery and Data Mining, 22-30. (Pubitemid 38824880)
    • (2004) Lecture Notes in Computer Science , Issue.3056 , pp. 22-30
    • Godbole, S.1    Sarawagi, S.2
  • 15
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • LEE, D. AND SEUNG, H. 1999. Learning the parts of objects by nonnegative matrix factorization. Nature 401, 788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 16
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • LEE, D. AND SEUNG, H. 2001. Algorithms for non-negative matrix factorization. Adv. Neural Inform. Process. Syst. 556-562.
    • (2001) Adv. Neural Inform. Process. Syst. , pp. 556-562
    • Lee, D.1    Seung, H.2
  • 18
    • 77951287219 scopus 로고    scopus 로고
    • Projective nonnegative graph embedding
    • LIU, X., YAN, S., AND JIN, H. 2010b. Projective nonnegative graph embedding. Trans. Image Process. 19, 5, 1126-1137.
    • (2010) Trans. Image Process , vol.19 , Issue.5 , pp. 1126-1137
    • Liu, X.1    Yan, S.2    Jin, H.3
  • 20
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • LOWE, D. 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 2, 60, 91-110.
    • (2004) Int. J. Comput. Vision , vol.2 , Issue.60 , pp. 91-110
    • Lowe, D.1
  • 21
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • DOI 10.1023/A:1011139631724
    • OLIVA, A. AND TORRALBA, A. 2001. Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vision 42, 3, 145-175. (Pubitemid 32680801)
    • (2001) International Journal of Computer Vision , vol.42 , Issue.3 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 23
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • ROWEIS, S. AND SAUL, L. 2000. Nonlinear dimensionality reduction by locally linear embedding. Science 290, 22, 2323-2326. (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 27
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • TENENBAUM, J., SILVA, V., AND LANGFORD, J. 2000. A global geometric framework for nonlinear dimensionality reduction. Science 290, 22, 2319-2323. (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 28
    • 17444392134 scopus 로고    scopus 로고
    • Image parsing: Unifying segmentation, detection and recognition
    • TU, Z., CHEN, X., YUILLE, A., AND ZHU, S. 2005. Image parsing: unifying segmentation, detection and recognition. Int. J. Comput. Vision.
    • (2005) Int. J. Comput. Vision
    • Tu, Z.1    Chen, X.2    Yuille, A.3    Zhu, S.4
  • 32
    • 7444219637 scopus 로고    scopus 로고
    • Logistic regression and boosting for labeled bags of instances
    • Advances in Knowledge Discovery and Data Mining
    • XU, X. AND FRANK, E. 2004. Logistic regression and boosting for labeled bags of instances. Adv. Knowl. Discov. Data Mining 3056. 272-281. (Pubitemid 38824910)
    • (2004) Lecture Notes in Computer Science , Issue.3056 , pp. 272-281
    • Xu, X.1    Frank, E.2
  • 35
    • 37849034618 scopus 로고    scopus 로고
    • Exploiting spatial context constraints for automatic image region annotation
    • YUAN, J., LI, J., AND ZHANG, B. 2007. Exploiting spatial context constraints for automatic image region annotation. In Proceedings of the ACM Conference on Multimedia. 595-604.
    • (2007) Proceedings of the ACM Conference on Multimedia , pp. 595-604
    • Yuan, J.1    Li, J.2    Zhang, B.3
  • 36
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • DOI 10.1016/j.patcog.2006.12.019, PII S0031320307000027
    • ZHANG, M. AND ZHOU, Z. 2007. Ml-knn: A lazy learning approach to multi-label learning. Pattern Recog. 40, 7, 2038-2048. (Pubitemid 46497248)
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 38
    • 84864028262 scopus 로고    scopus 로고
    • Multi-instance multi-label learning with application to scene classification
    • ZHOU, Z. AND ZHANG, M. 2007. Multi-instance multi-label learning with application to scene classification. Adv. Neural Inform. Process. Syst. 1609-1616.
    • (2007) Adv. Neural Inform. Process. Syst. , pp. 1609-1616
    • Zhou, Z.1    Zhang, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.