메뉴 건너뛰기




Volumn , Issue , 2009, Pages 307-316

Unified solution to nonnegative data factorization problems

Author keywords

[No Author keywords available]

Indexed keywords

CONVERGENCY; CONVEX DATA; FACTORIZATION ALGORITHMS; FEATURE SPACE; MULTI-LABEL; NONNEGATIVE MATRIX FACTORIZATION; NONNEGATIVE ORTHANT; OPTIMIZATION PROBLEMS; QUADRATIC OBJECTIVE FUNCTIONS; SAMPLE DATA;

EID: 77951156665     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2009.18     Document Type: Conference Paper
Times cited : (18)

References (30)
  • 1
    • 77951185755 scopus 로고    scopus 로고
    • http://www.acm.caltech.edu/l1magic.
  • 2
    • 3042597440 scopus 로고    scopus 로고
    • Learning multilabel scene classification
    • M. Boutell, J. Luo, X. Shen, and C. Brown. Learning multilabel scene classification. Pattern Recognition, vol. 37, no. 9, pp. 1757-1771, 2004.
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 4
    • 0031185845 scopus 로고    scopus 로고
    • Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection
    • P. Belhumeur, J. Hespanha, and D. Kriegman. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. TPAMI, pp. 711-720, 2002.
    • (2002) TPAMI , pp. 711-720
    • Belhumeur, P.1    Hespanha, J.2    Kriegman., D.3
  • 5
  • 6
  • 7
    • 74049158146 scopus 로고    scopus 로고
    • Nus-wide: A realworld web image database from national university of Singapore
    • T. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng. Nus-wide: A realworld web image database from national university of singapore. In ACM CIVR, 2009.
    • (2009) ACM CIVR
    • Chua, T.1    Tang, J.2    Hong, R.3    Li, H.4    Luo, Z.5    Zheng, Y.6
  • 8
    • 67049155384 scopus 로고    scopus 로고
    • Non-negative matrix factorization on manifold
    • D. Cai, X. He, X. Hu and J. Han. Non-negative Matrix Factorization on Manifold. ICDM, pp. 63-72, 2008.
    • (2008) ICDM , pp. 63-72
    • Cai, D.1    He, X.2    Hu, X.3    Han, J.4
  • 9
    • 35148813570 scopus 로고    scopus 로고
    • Learning a spatially smooth subspace for face recognition
    • D. Cai, X. He, Y. Hu, J. Han, and T. Huang, Learning a Spatially Smooth Subspace for Face Recognition. CVPR, 2007.
    • (2007) CVPR
    • Cai, D.1    He, X.2    Hu, Y.3    Han, J.4    Huang, T.5
  • 10
    • 33749575326 scopus 로고    scopus 로고
    • Orthogonal nonnegative matrix trifactorization for clustering
    • D. Chris, T. Li, P. Wei and P. Haesun. Orthogonal nonnegative matrix trifactorization for clustering. KDD, pp. 126-135, 2006.
    • (2006) KDD , pp. 126-135
    • Chris, D.1    Li, T.2    Wei, P.3    Haesun, P.4
  • 11
    • 77951195064 scopus 로고    scopus 로고
    • Convex and semi-nonnegative matrix factorizations
    • accpted
    • D. Chris, T. Li and M. Jordan. Convex and Semi-Nonnegative Matrix Factorizations. TPAMI, accpted, 2009.
    • (2009) TPAMI
    • Chris, D.1    Li, T.2    Jordan, M.3
  • 12
    • 2542631648 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • A. Elisseef and J. Weston. A kernel method for multi-labelled classification. In NIPS, vol. 14, pp. 681-687, 2001.
    • (2001) NIPS , vol.14 , pp. 681-687
    • Elisseef, A.1    Weston, J.2
  • 13
    • 54349120311 scopus 로고    scopus 로고
    • Working set selection using the second order information for training SVM
    • R. Fan, P. Chen, and C. Lin. Working set selection using the second order information for training SVM. JMLR, 2005.
    • (2005) JMLR
    • Fan, R.1    Chen, P.2    Lin, C.3
  • 14
    • 0035363672 scopus 로고    scopus 로고
    • From few to many: Illumination cone models for face recognition under variable lighting and pose
    • A. Georghiades, P. Belhumeur and D. Kriegman. From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose. TPAMI, vol. 23, no. 6, pp. 643-660, 2001.
    • (2001) TPAMI , vol.23 , Issue.6 , pp. 643-660
    • Georghiades, A.1    Belhumeur, P.2    Kriegman, D.3
  • 15
    • 0000107975 scopus 로고
    • Relations between two sets of variables
    • H. Hotelling. Relations between two sets of variables Biometrika, vol. 28, pp. 312-377, 1936.
    • (1936) Biometrika , vol.28 , pp. 312-377
    • Hotelling, H.1
  • 17
    • 33845583962 scopus 로고    scopus 로고
    • Correlated label propagation with application to multi-label learning
    • F. Kang, R. Jin, and R. Sukthankar. Correlated label propagation with application to multi-label learning. CVPR, pp. 1719-1726, 2006.
    • (2006) CVPR , pp. 1719-1726
    • Kang, F.1    Jin, R.2    Sukthankar, R.3
  • 18
    • 0035683536 scopus 로고    scopus 로고
    • Learning spatially localized, partsbased representation
    • S. Li, X. Hou, H. Zhang, and Q. Cheng. Learning spatially localized, partsbased representation. CVPR, pp. 207-212, 2001.
    • (2001) CVPR , pp. 207-212
    • Li, S.1    Hou, X.2    Zhang, H.3    Cheng, Q.4
  • 19
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • C. Lin. Projected Gradient Methods for Nonnegative Matrix Factorization Neural Computation, vol. 19, no.10, pp. 2756-2779, 2007.
    • (2007) Neural Computation , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.1
  • 20
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • D. Lee and H. Seung. Learning the parts of objects by nonnegative matrix factorization. Nature, vol. 401, pp. 788-791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 21
    • 0033275630 scopus 로고    scopus 로고
    • The multilinear engine-A table-driven, least squares program for solving multilinear problems
    • P. Paatero. The multilinear engine-A table-driven, least squares program for solving multilinear problems. JCGS, vol. 8, no. 4, pp.854-888, 1999.
    • (1999) JCGS , vol.8 , Issue.4 , pp. 854-888
    • Paatero, P.1
  • 22
    • 0347380229 scopus 로고    scopus 로고
    • The CMU pose, illumination, and expression database
    • Terence Sim, Simon Baker and Maan Bsat. The CMU Pose, Illumination, and Expression Database. TPAMI, vol. 25, no. 12, pp. 1615-1618, 2003.
    • (2003) TPAMI , vol.25 , Issue.12 , pp. 1615-1618
    • Sim, T.1    Baker, S.2    Bsat, M.3
  • 24
    • 34548051389 scopus 로고    scopus 로고
    • Multiplicative updates for nonnegative quadratic programming
    • F. Sha, Y. Lin, L. Saul and D. Lee. Multiplicative updates for nonnegative quadratic programming Neural Computation, vol. 19, no. 8, pp. 2004-2031, 2007.
    • (2007) Neural Computation , vol.19 , Issue.8 , pp. 2004-2031
    • Sha, F.1    Lin, Y.2    Saul, L.3    Lee, D.4
  • 25
    • 33845423382 scopus 로고    scopus 로고
    • Textonboost: Joint appearance, shape and context modeling for mulit-class object recognition and segmentation
    • J. Shotton, J. Winn, C. Rother, A. Criminisi. TextonBoost: Joint Appearance, Shape and Context Modeling for Mulit-Class Object Recognition and Segmentation. ECCV, 2006.
    • (2006) ECCV
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 27
    • 26444591944 scopus 로고    scopus 로고
    • Projective nonnegative matrix factorization for image compression and feature extraction
    • Z. Yuan and E. Oja. Projective nonnegative matrix factorization for image compression and feature extraction. In Proc. Scandinavian Conference on Image Analysis, pp. 333-342, 2005.
    • (2005) Proc. Scandinavian Conference on Image Analysis , pp. 333-342
    • Yuan, Z.1    Oja, E.2
  • 28
    • 33947194180 scopus 로고    scopus 로고
    • Graph embedding and extensions: A general framework for dimensionality reduction
    • S. Yan, D. Xu, B. Zhang, Q. Yang, H. Zhang, and S. Lin. Graph Embedding and Extensions: A General Framework for Dimensionality Reduction. TPAMI, vol. 29, pp. 40-51, 2007.
    • (2007) TPAMI , vol.29 , pp. 40-51
    • Yan, S.1    Xu, D.2    Zhang, B.3    Yang, Q.4    Zhang, H.5    Lin, S.6
  • 29
    • 33947681316 scopus 로고    scopus 로고
    • A lazy learning approach to multi-label learning
    • M. Zhang and Z. Zhou. Ml-knn: A lazy learning approach to multi-label learning. Pattern Recognition, vol. 40, no. 7, pp. 2038-2048, 2007.
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.1    Zhou, Z.2    Ml-Knn3
  • 30
    • 33750823079 scopus 로고    scopus 로고
    • Multioutput regularized feature projection
    • S. Yu, K. Yu, V. Tresp and H. P. Kriegel. Multioutput regularized feature projection. TKDE, vol. 18, pp. 1600-1613, 2006.
    • (2006) TKDE , vol.18 , pp. 1600-1613
    • Yu, S.1    Yu, K.2    Tresp, V.3    Kriegel, H.P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.