-
1
-
-
33847350691
-
Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases
-
doi:10.1172/ JCI31487 PubMed
-
Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest. 2007; 117: 524-529. doi:10.1172/ JCI31487 PubMed
-
(2007)
J Clin Invest.
, vol.117
, pp. 524-529
-
-
Wynn, T.A.1
-
2
-
-
73949096744
-
Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis
-
doi:10.2353/ajpath.2010.090517 PubMed
-
Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, Mc- Mahon AP, Duffield JS. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2010; 176: 85-97. doi:10.2353/ajpath.2010.090517 PubMed
-
(2010)
Am J Pathol.
, vol.176
, pp. 85-97
-
-
Humphreys, B.D.1
Lin, S.L.2
Kobayashi, A.3
Hudson, T.E.4
Nowlin, B.T.5
Bonventre, J.V.6
Valerius, M.T.7
McMahon, A.P.8
Duffield, J.S.9
-
3
-
-
79954993703
-
Mechanisms of fibrosis: the role of the pericyte
-
doi:10.1097/MNH.0b 01 3e328344c3d4 PubMed
-
Schrimpf C, Duffield JS. Mechanisms of fibrosis: the role of the pericyte. Curr Opin Nephrol Hypertens. 2011; 20: 297-305. doi:10.1097/MNH .0b 01 3e328344c3d4 PubMed
-
(2011)
Curr Opin Nephrol Hypertens.
, vol.20
, pp. 297-305
-
-
Schrimpf, C.1
Duffield, J.S.2
-
4
-
-
77953881058
-
Macrophages and immunologic inflammation of the kidney
-
doi:10.1016/j.semnephrol.2010. 03. 0 03 PubMed
-
Duffield JS. Macrophages and immunologic inflammation of the kidney. Semin Nephrol. 2010; 30: 234-254. doi:10.1016/j.semnephrol.2010. 03. 0 03 PubMed
-
(2010)
Semin Nephrol.
, vol.30
, pp. 234-254
-
-
Duffield, J.S.1
-
5
-
-
77749319814
-
Serum amyloid P inhibits fibrosis through Fc gamma R-dependent monocyte-macrophage regulation in vivo
-
Castano AP, Lin SL, Surowy T, Nowlin BT, Turlapati SA, Patel T, Singh A, Li S, Lupher ML Jr, Duffield JS. Serum amyloid P inhibits fibrosis through Fc gamma R-dependent monocyte-macrophage regulation in vivo. Sci Transl Med. 2009; 1: 5ra13.
-
(2009)
Sci Transl Med.
, vol.1
-
-
Castano, A.P.1
Lin, S.L.2
Surowy, T.3
Nowlin, B.T.4
Turlapati, S.A.5
Patel, T.6
Singh, A.7
Li, S.8
Lupher Jr., M.L.9
Duffield, J.S.10
-
6
-
-
57149113728
-
Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney
-
doi:10.2353/ajpath.2008.0 80 433 PubMed
-
Lin SL, Kisseleva T, Brenner DA, Duffield JS. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol. 2008; 173: 1617-1627. doi:10.2353/ajpath.2008.0 80 433 PubMed
-
(2008)
Am J Pathol.
, vol.173
, pp. 1617-1627
-
-
Lin, S.L.1
Kisseleva, T.2
Brenner, D.A.3
Duffield, J.S.4
-
7
-
-
84861874542
-
Frontiers in Research: Chronic Kidney Diseases: The pivotal role of pericytes in kidney fibrosis
-
Kida Y, Duffield JS. Frontiers in Research: Chronic Kidney Diseases: The pivotal role of pericytes in kidney fibrosis. Clin Exp Pharmacol Physiol. 2011; 38: 417-423. http://www.ncbi.nlm.nih.gov/pubmed?term=%22Clinical+and+experimental+pharmacology+%26+physiology%22%5BJour%5D+AND+38%5Bvolume%5D+AND+417%5Bpage%5D&cmd=detailssearch
-
(2011)
Clin Exp Pharmacol Physiol.
, vol.38
, pp. 417-423
-
-
Kida, Y.1
Duffield, J.S.2
-
8
-
-
22144440464
-
Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells
-
doi:10.1172/JCI22593 PubMed
-
Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T, Bonventre JV. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest. 2005; 115: 1743-1755. doi:10.1172/JCI22593 PubMed
-
(2005)
J Clin Invest.
, vol.115
, pp. 1743-1755
-
-
Duffield, J.S.1
Park, K.M.2
Hsiao, L.L.3
Kelley, V.R.4
Scadden, D.T.5
Ichimura, T.6
Bonventre, J.V.7
-
9
-
-
27644557532
-
The role of pericytes in bloodvessel formation and maintenance
-
doi:10.1215/S1152851705 00 02 32 PubMed
-
Bergers G, Song S. The role of pericytes in bloodvessel formation and maintenance. Neuro-oncol. 2005; 7: 452-464. doi:10.1215/S1152851705 00 02 32 PubMed
-
(2005)
Neuro-oncol.
, vol.7
, pp. 452-464
-
-
Bergers, G.1
Song, S.2
-
10
-
-
0035015517
-
Pericytes: cell biology and pathology
-
doi:10.1159/000047855 PubMed
-
Allt G, Lawrenson JG. Pericytes: cell biology and pathology. Cells Tissues Organs. 2001; 169: 1-11. doi:10.1159/000047855 PubMed
-
(2001)
Cells Tissues Organs.
, vol.169
, pp. 1-11
-
-
Allt, G.1
Lawrenson, J.G.2
-
11
-
-
0021329951
-
Morphology of the microvascular bed in primary human carcinomas of lung. Part II. Morphometric investigations of microvascular bed of lung tumors
-
PubMed
-
Zieliński KW, Kulig A, Zieliński J. Morphology of the microvascular bed in primary human carcinomas of lung. Part II. Morphometric investigations of microvascular bed of lung tumors. Pathol Res Pract. 1984; 178: 369-377. PubMed
-
(1984)
Pathol Res Pract.
, vol.178
, pp. 369-377
-
-
Zieliński, K.W.1
Kulig, A.2
Zieliński, J.3
-
12
-
-
64549113715
-
TGF-beta is required for vascular barrier function, endothelial survival and homeostasis of the adult microvasculature
-
doi:10.1371/ journal.pone.0005149 PubMed
-
Walshe TE, Saint-Geniez M, Maharaj AS, Sekiyama E, Maldonado AE, D'Amore PA. TGF-beta is required for vascular barrier function, endothelial survival and homeostasis of the adult microvasculature. PLoS ONE. 2009; 4: e5149. doi:10.1371/ journal.pone.0005149 PubMed
-
(2009)
PLoS ONE.
, vol.4
-
-
Walshe, T.E.1
Saint-Geniez, M.2
Maharaj, A.S.3
Sekiyama, E.4
Maldonado, A.E.5
D'Amore, P.A.6
-
13
-
-
0027955520
-
Blood-eye barriers in the rat: correlation of ultrastructure with function
-
doi:10.1002/ cne.903400409 PubMed
-
Stewart PA, Tuor UI. Blood-eye barriers in the rat: correlation of ultrastructure with function. J Comp Neurol. 1994; 340: 566-576. doi:10.1002/ cne.903400409 PubMed
-
(1994)
J Comp Neurol.
, vol.340
, pp. 566-576
-
-
Stewart, P.A.1
Tuor, U.I.2
-
14
-
-
73349140140
-
CNS pericytes: concepts, misconceptions, and a way out
-
doi:10.1002/glia.20898 PubMed
-
Krueger M, Bechmann I. CNS pericytes: concepts, misconceptions, and a way out. Glia. 2010; 58: 1-10. doi:10.1002/glia.20898 PubMed
-
(2010)
Glia.
, vol.58
, pp. 1-10
-
-
Krueger, M.1
Bechmann, I.2
-
15
-
-
0021824956
-
Microvascular pericytes contain muscle and nonmuscle actins
-
doi:10.1083/jcb.101.1.43 PubMed
-
Herman IM, D'Amore PA. Microvascular pericytes contain muscle and nonmuscle actins. J Cell Biol. 1985; 101: 43-52. doi:10.1083/jcb.101.1.43 PubMed
-
(1985)
J Cell Biol.
, vol.101
, pp. 43-52
-
-
Herman, I.M.1
D'Amore, P.A.2
-
16
-
-
33749860102
-
Bidirectional control of CNS capillary diameter by pericytes
-
doi:10. 1038/nature05193 PubMed
-
Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature. 2006; 443: 700-704. doi:10. 1038/nature05193 PubMed
-
(2006)
Nature.
, vol.443
, pp. 700-704
-
-
Peppiatt, C.M.1
Howarth, C.2
Mobbs, P.3
Attwell, D.4
-
17
-
-
0021458902
-
Submicroscopic changes of cortical capillary pericytes in human perifocal brain edema
-
PubMed
-
Castejón OJ. Submicroscopic changes of cortical capillary pericytes in human perifocal brain edema. J Submicrosc Cytol. 1984; 16: 601-618. PubMed
-
(1984)
J Submicrosc Cytol.
, vol.16
, pp. 601-618
-
-
Castejón, O.J.1
-
18
-
-
79951816985
-
Targeting endothelium- pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis
-
doi:10.1016/j.ajpath.2010.10.012 PubMed
-
Lin SL, Chang FC, Schrimpf C, Chen YT, Wu CF, Wu VC, Chiang WC, Kuhnert F, Kuo CJ, Chen YM, Wu KD, Tsai TJ, Duffield JS. Targeting endothelium- pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. Am J Pathol. 2011; 178: 911-923. doi:10.1016/j.ajpath.2010.10.012 PubMed
-
(2011)
Am J Pathol.
, vol.178
, pp. 911-923
-
-
Lin, S.L.1
Chang, F.C.2
Schrimpf, C.3
Chen, Y.T.4
Wu, C.F.5
Wu, V.C.6
Chiang, W.C.7
Kuhnert, F.8
Kuo, C.J.9
Chen, Y.M.10
Wu, K.D.11
Tsai, T.J.12
Duffield, J.S.13
-
19
-
-
0032768156
-
Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse
-
PubMed
-
Hellström M, Kalén M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 1999; 126: 3047-3055. PubMed
-
(1999)
Development.
, vol.126
, pp. 3047-3055
-
-
Hellström, M.1
Kalén, M.2
Lindahl, P.3
Abramsson, A.4
Betsholtz, C.5
-
20
-
-
59949085812
-
Roles of angiopoietins in kidney development and disease
-
doi:10.1681/ ASN.2008020243 PubMed
-
Woolf AS, Gnudi L, Long DA. Roles of angiopoietins in kidney development and disease. J Am Soc Nephrol. 2009; 20: 239-244. doi:10.1681/ ASN.2008020243 PubMed
-
(2009)
J Am Soc Nephrol.
, vol.20
, pp. 239-244
-
-
Woolf, A.S.1
Gnudi, L.2
Long, D.A.3
-
21
-
-
2942682933
-
Insight into the physiological functions of PDGF through genetic studies in mice
-
doi:10.1016/j.cytogfr.2004.03.005 PubMed
-
Betsholtz C. Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev. 2004; 15: 215-228. doi:10.1016/j.cytogfr.2004.03.005 PubMed
-
(2004)
Cytokine Growth Factor Rev.
, vol.15
, pp. 215-228
-
-
Betsholtz, C.1
-
22
-
-
0142243109
-
Roles of PDGF in animal development
-
doi:10.1242/dev.00721 PubMed
-
Hoch RV, Soriano P. Roles of PDGF in animal development. Development. 2003; 130: 4769-4784. doi:10.1242/dev.00721 PubMed
-
(2003)
Development.
, vol.130
, pp. 4769-4784
-
-
Hoch, R.V.1
Soriano, P.2
-
23
-
-
79951678325
-
Origin of new cells in the adult kidney: results from genetic labeling techniques
-
doi:10.1038/ki.2010.338 PubMed
-
Duffield JS, Humphreys BD. Origin of new cells in the adult kidney: results from genetic labeling techniques. Kidney Int. 2011; 79: 494-501. doi:10.1038/ki.2010.338 PubMed
-
(2011)
Kidney Int.
, vol.79
, pp. 494-501
-
-
Duffield, J.S.1
Humphreys, B.D.2
-
24
-
-
0029001244
-
Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation
-
doi:10.1038/376070a0 PubMed
-
Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature. 1995; 376: 70-74. doi:10.1038/376070a0 PubMed
-
(1995)
Nature.
, vol.376
, pp. 70-74
-
-
Sato, T.N.1
Tozawa, Y.2
Deutsch, U.3
Wolburg-Buchholz, K.4
Fujiwara, Y.5
Gendron-Maguire, M.6
Gridley, T.7
Wolburg, H.8
Risau, W.9
Qin, Y.10
-
25
-
-
0030460424
-
Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning
-
doi:10.1016/S0092-8674(00) 81 81 2-7 PubMed
-
Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell. 1996; 87: 1161-1169. doi:10.1016/S0092-8674(00) 81 81 2-7 PubMed
-
(1996)
Cell.
, vol.87
, pp. 1161-1169
-
-
Davis, S.1
Aldrich, T.H.2
Jones, P.F.3
Acheson, A.4
Compton, D.L.5
Jain, V.6
Ryan, T.E.7
Bruno, J.8
Radziejewski, C.9
Maisonpierre, P.C.10
Yancopoulos, G.D.11
-
26
-
-
0037007226
-
Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors
-
doi:10.1093/emboj/21.7.1743 PubMed
-
Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J. 2002; 21: 1743-1753. doi:10.1093/emboj/21.7.1743 PubMed
-
(2002)
EMBO J.
, vol.21
, pp. 1743-1753
-
-
Goumans, M.J.1
Valdimarsdottir, G.2
Itoh, S.3
Rosendahl, A.4
Sideras, P.5
ten Dijke, P.6
-
27
-
-
8144230707
-
Endoglin promotes endothelial cell proliferation and TGF-β/ALK1 signal transduction
-
doi:10.1038/sj.emboj.7600386 PubMed
-
Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G, Thorikay M, Mummery C, Arthur HM, ten Dijke P. Endoglin promotes endothelial cell proliferation and TGF-β/ALK1 signal transduction. EMBO J. 2004; 23: 4018-4028. doi:10.1038/sj.emboj.7600386 PubMed
-
(2004)
EMBO J.
, vol.23
, pp. 4018-4028
-
-
Lebrin, F.1
Goumans, M.J.2
Jonker, L.3
Carvalho, R.L.4
Valdimarsdottir, G.5
Thorikay, M.6
Mummery, C.7
Arthur, H.M.8
ten Dijke, P.9
-
28
-
-
74049087142
-
Localization of angiopoietin-1 and Tie2 immunoreactivity in rodent ependyma and adjacent blood vessels suggests functional relationships
-
doi:10.1369/jhc.2009.954610 PubMed
-
Horton BN, Solanki RB, Rajneesh KF, Kulesza P, Ardelt AA. Localization of angiopoietin-1 and Tie2 immunoreactivity in rodent ependyma and adjacent blood vessels suggests functional relationships. J Histochem Cytochem. 2010; 58: 53-60. doi:10.1369/jhc.2009.954610 PubMed
-
(2010)
J Histochem Cytochem.
, vol.58
, pp. 53-60
-
-
Horton, B.N.1
Solanki, R.B.2
Rajneesh, K.F.3
Kulesza, P.4
Ardelt, A.A.5
-
29
-
-
44849099528
-
Blood-neural barrier: its diversity and coordinated cell-to-cell communication
-
doi:10.5483/BMBRep. 2008.41.5.345 PubMed
-
Choi YK, Kim KW. Blood-neural barrier: its diversity and coordinated cell-to-cell communication. BMB Rep. 2008; 41: 345-352. doi:10.5483/BMBRep. 2008.41.5.345 PubMed
-
(2008)
BMB Rep.
, vol.41
, pp. 345-352
-
-
Choi, Y.K.1
Kim, K.W.2
-
30
-
-
78649467527
-
Pericytes regulate the blood-brain barrier
-
doi:10.1038/nature09522 PubMed
-
Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C. Pericytes regulate the blood-brain barrier. Nature. 2010; 468: 557-561. doi:10.1038/nature09522 PubMed
-
(2010)
Nature.
, vol.468
, pp. 557-561
-
-
Armulik, A.1
Genové, G.2
Mäe, M.3
Nisancioglu, M.H.4
Wallgard, E.5
Niaudet, C.6
He, L.7
Norlin, J.8
Lindblom, P.9
Strittmatter, K.10
Johansson, B.R.11
Betsholtz, C.12
-
31
-
-
78649487239
-
Pericytes are required for blood-brain barrier integrity during embryogenesis
-
doi:10.1038/nature09513 PubMed
-
Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 2010; 468: 562-566. doi:10.1038/nature09513 PubMed
-
(2010)
Nature.
, vol.468
, pp. 562-566
-
-
Daneman, R.1
Zhou, L.2
Kebede, A.A.3
Barres, B.A.4
-
32
-
-
79958788461
-
The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival
-
PubMed
-
Bonkowski D, Katyshev V, Balabanov RD, Borisov A, Dore-Duffy P. The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS. 2011; 8: 8. PubMed
-
(2011)
Fluids Barriers CNS.
, vol.8
, pp. 8
-
-
Bonkowski, D.1
Katyshev, V.2
Balabanov, R.D.3
Borisov, A.4
Dore-Duffy, P.5
-
33
-
-
78649455280
-
Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization
-
doi:10.1182/ blood-2010-05-286872 PubMed
-
Stratman AN, Schwindt AE, Malotte KM, Davis GE. Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood. 2010; 116: 4720-4730. doi:10.1182/ blood-2010-05-286872 PubMed
-
(2010)
Blood.
, vol.116
, pp. 4720-4730
-
-
Stratman, A.N.1
Schwindt, A.E.2
Malotte, K.M.3
Davis, G.E.4
-
34
-
-
38749125145
-
Mechanisms controlling human endothelial lumen formation and tube assembly in three-dimensional extracellular matrices
-
doi:10.1002/bdrc.20107 PubMed
-
Davis GE, Koh W, Stratman AN. Mechanisms controlling human endothelial lumen formation and tube assembly in three-dimensional extracellular matrices. Birth Defects Res C Embryo Today. 2007; 81: 270-285. doi:10.1002/bdrc.20107 PubMed
-
(2007)
Birth Defects Res C Embryo Today.
, vol.81
, pp. 270-285
-
-
Davis, G.E.1
Koh, W.2
Stratman, A.N.3
-
35
-
-
73949086144
-
Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation
-
doi:10.1182/blood-2009-05-2 22 364 PubMed
-
Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GE. Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood. 2009; 114: 5091-5101. doi:10.1182/blood-2009-05-2 22 364 PubMed
-
(2009)
Blood.
, vol.114
, pp. 5091-5101
-
-
Stratman, A.N.1
Malotte, K.M.2
Mahan, R.D.3
Davis, M.J.4
Davis, G.E.5
-
36
-
-
78649460917
-
Clinicopathological significance of platelet-derived growth factor (PDGF)-B and vascular endothelial growth factor- A expression, PDGF receptor-β phosphorylation, and microvessel density in gastric cancer
-
doi:101186/1471-2407-10-659 PubMed
-
Suzuki S, Dobashi Y, Hatakeyama Y, Tajiri R, Fujimura T, Heldin CH, Ooi A. Clinicopathological significance of platelet-derived growth factor (PDGF)-B and vascular endothelial growth factor- A expression, PDGF receptor-β phosphorylation, and microvessel density in gastric cancer. BMC Cancer. 2010; 10: 659 doi:10.1186/1471-2407-10-659 PubMed
-
(2010)
BMC Cancer.
, vol.10
, pp. 659
-
-
Suzuki, S.1
Dobashi, Y.2
Hatakeyama, Y.3
Tajiri, R.4
Fujimura, T.5
Heldin, C.H.6
Ooi, A.7
-
37
-
-
79960408937
-
VEGF and c-Met blockade amplify angiogenesis inhibition in pancreatic islet cancer
-
PubMed
-
You WK, Sennino B, Williamson CW, Falcón B, Hashizume H, Yao LC, Aftab DT, McDonald DM. VEGF and c-Met blockade amplify angiogenesis inhibition in pancreatic islet cancer. Cancer Res. 2011; 71: 4758-4768. PubMed
-
(2011)
Cancer Res.
, vol.71
, pp. 4758-4768
-
-
You, W.K.1
Sennino, B.2
Williamson, C.W.3
Falcón, B.4
Hashizume, H.5
Yao, L.C.6
Aftab, D.T.7
McDonald, D.M.8
-
38
-
-
33749441325
-
Rapid vascular regrowth in tumors after reversal of VEGF inhibition
-
doi:10.1172/JCI24612 PubMed
-
Mancuso MR, Davis R, Norberg SM, O'Brien S, Sennino B, Nakahara T, Yao VJ, Inai T, Brooks P, Freimark B, Shalinsky DR, Hu-Lowe DD, McDonald DM. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest. 2006; 116: 2610-2621. doi:10.1172/JCI24612 PubMed
-
(2006)
J Clin Invest.
, vol.116
, pp. 2610-2621
-
-
Mancuso, M.R.1
Davis, R.2
Norberg, S.M.3
O'Brien, S.4
Sennino, B.5
Nakahara, T.6
Yao, V.J.7
Inai, T.8
Brooks, P.9
Freimark, B.10
Shalinsky, D.R.11
Hu-Lowe, D.D.12
McDonald, D.M.13
-
39
-
-
0014373275
-
Ultrastructure of mammalian venous capillaries, venules, and small collecting veins
-
doi:10.1016/ S0022-5320(68)80098-X PubMed
-
Rhodin JA. Ultrastructure of mammalian venous capillaries, venules, and small collecting veins. J Ultrastruct Res. 1968; 25: 452-500. doi:10.1016/ S0022-5320(68)80098-X PubMed
-
(1968)
J Ultrastruct Res.
, vol.25
, pp. 452-500
-
-
Rhodin, J.A.1
-
40
-
-
25444463573
-
Endothelial/ pericyte interactions
-
doi:10.1161/01.RES.0000182903.16652.d7 PubMed
-
Armulik A, Abramsson A, Betsholtz C. Endothelial/ pericyte interactions. Circ Res. 2005; 97: 512-523. doi:10.1161/01.RES.0000182903.16652.d7 PubMed
-
(2005)
Circ Res.
, vol.97
, pp. 512-523
-
-
Armulik, A.1
Abramsson, A.2
Betsholtz, C.3
-
41
-
-
48149095359
-
Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development
-
doi:10.1016/j.stem.2008.05.020 PubMed
-
Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell. 2008; 3: 169-181. doi:10.1016/j.stem.2008.05.020 PubMed
-
(2008)
Cell Stem Cell.
, vol.3
, pp. 169-181
-
-
Kobayashi, A.1
Valerius, M.T.2
Mugford, J.W.3
Carroll, T.J.4
Self, M.5
Oliver, G.6
McMahon, A.P.7
-
42
-
-
84857115631
-
The origin of interstitial myofibroblasts in chronic kidney disease
-
Epub ahead of print. PubMed
-
Grgic I, Duffield JS, Humphreys BD. The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr Nephrol. 2011; Epub ahead of print. PubMed
-
(2011)
Pediatr Nephrol.
-
-
Grgic, I.1
Duffield, J.S.2
Humphreys, B.D.3
-
43
-
-
0029741093
-
Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2
-
doi:10.1101/ gad.10.12.1467 PubMed
-
Hatini V, Huh SO, Herzlinger D, Soares VC, Lai E. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev. 1996; 10: 1467-1478. doi:10.1101/ gad.10.12.1467 PubMed
-
(1996)
Genes Dev.
, vol.10
, pp. 1467-1478
-
-
Hatini, V.1
Huh, S.O.2
Herzlinger, D.3
Soares, V.C.4
Lai, E.5
-
44
-
-
0141615697
-
Transcriptional activation of placental growth factor by the forkhead/winged helix transcription factor FoxD1
-
doi:10.1016/j.cub.2003.08.054 PubMed
-
Zhang H, Palmer R, Gao X, Kreidberg J, Gerald W, Hsiao L, Jensen RV, Gullans SR, Haber DA. Transcriptional activation of placental growth factor by the forkhead/winged helix transcription factor FoxD1. Curr Biol. 2003; 13: 1625-1629. doi:10.1016/j.cub.2003.08.054 PubMed
-
(2003)
Curr Biol.
, vol.13
, pp. 1625-1629
-
-
Zhang, H.1
Palmer, R.2
Gao, X.3
Kreidberg, J.4
Gerald, W.5
Hsiao, L.6
Jensen, R.V.7
Gullans, S.R.8
Haber, D.A.9
-
45
-
-
79954581525
-
Epithelial to mesenchymal transition as a biomarker in renal fibrosis: are we ready for the bedside?
-
Galichon P, Hertig A. Epithelial to mesenchymal transition as a biomarker in renal fibrosis: are we ready for the bedside? Fibrogenesis Tissue Repair. 2011; 4: 11.
-
(2011)
Fibrogenesis Tissue Repair
, vol.4
, pp. 11
-
-
Galichon, P.1
Hertig, A.2
-
46
-
-
27544515448
-
Origin of interstitial fibroblasts in an accelerated model of angiotensin II-induced renal fibrosis
-
doi:10.1016/S0002-9440(10)61208-4 PubMed
-
Faulkner JL, Szcykalski LM, Springer F, Barnes JL. Origin of interstitial fibroblasts in an accelerated model of angiotensin II-induced renal fibrosis. Am J Pathol. 2005; 167: 1193-1205. doi:10.1016/S0002-9440(10)61208-4 PubMed
-
(2005)
Am J Pathol.
, vol.167
, pp. 1193-1205
-
-
Faulkner, J.L.1
Szcykalski, L.M.2
Springer, F.3
Barnes, J.L.4
-
47
-
-
77955602944
-
Resolved: EMT produces fibroblasts in the kidney
-
doi:10.1681/ ASN.2010060616 PubMed
-
Zeisberg M, Duffield JS. Resolved: EMT produces fibroblasts in the kidney. J Am Soc Nephrol. 2010; 21: 1247-1253. doi:10.1681/ ASN.2010060616 PubMed
-
(2010)
J Am Soc Nephrol.
, vol.21
, pp. 1247-1253
-
-
Zeisberg, M.1
Duffield, J.S.2
-
48
-
-
81155131228
-
Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis
-
Chen YT, Chang FC, Wu CF, Chou YH, Hsu HL, Chiang WC, Shen J, Chen YM, Wu KD, Tsai TJ, Duffield HS, Lin SL. Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int. 2011; 80: 1170-1181. http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kidney+international%22%5BJour%5D+AND+80%5Bvolume%5D+AND+1170%5Bpage%5D&cmd=detailssearch
-
(2011)
Kidney Int.
, vol.80
, pp. 1170-1181
-
-
Chen, Y.T.1
Chang, F.C.2
Wu, C.F.3
Chou, Y.H.4
Hsu, H.L.5
Chiang, W.C.6
Shen, J.7
Chen, Y.M.8
Wu, K.D.9
Tsai, T.J.10
Duffield, H.S.11
Lin, S.L.12
|