메뉴 건너뛰기




Volumn , Issue , 2011, Pages 343-349

Across-Model Collective Ensemble Classification

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE;

EID: 84861446351     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (16)

References (20)
  • 1
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E., and Kohavi, R. 1999. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36.
    • (1999) Machine Learning , vol.36
    • Bauer, E.1    Kohavi, R.2
  • 2
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • Blum, A., and Mitchell, T. 1998. Combining labeled and unlabeled data with co-training. In Proc. of CLT'98.
    • (1998) Proc. of CLT'98
    • Blum, A.1    Mitchell, T.2
  • 3
    • 84974722422 scopus 로고    scopus 로고
    • Diversity versus quality in classification ensembles based on feature selection
    • Cunningham, P., and Carney, J. 2000. Diversity versus quality in classification ensembles based on feature selection. In Machine Learning: ECML 2000, volume 1810, 109-116.
    • (2000) Machine Learning: ECML 2000 , vol.1810 , pp. 109-116
    • Cunningham, P.1    Carney, J.2
  • 4
    • 0002900451 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Dietterich, T. 2000. Ensemble methods in machine learning. In Proc. of MCS'00.
    • (2000) Proc. of MCS'00
    • Dietterich, T.1
  • 7
    • 67049098006 scopus 로고    scopus 로고
    • Why stacked models perform effective collective classification
    • Fast, A., and Jensen, D. 2008. Why stacked models perform effective collective classification. In Proc. of ICDM'08.
    • (2008) Proc. of ICDM'08
    • Fast, A.1    Jensen, D.2
  • 8
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1-loss, and the curse-of-dimensionality
    • Friedman, J. 1997. On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery 1(1).
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.1
    • Friedman, J.1
  • 9
  • 10
    • 84863338443 scopus 로고    scopus 로고
    • Graph-based consensus maximization among multiple supervised and unsupervised models
    • Gao, J.; Liang, F.; Fan, W.; Sun, Y.; and Han, J. 2009. Graph-based consensus maximization among multiple supervised and unsupervised models. In Proc. of NIPS'09.
    • (2009) Proc. of NIPS'09
    • Gao, J.1    Liang, F.2    Fan, W.3    Sun, Y.4    Han, J.5
  • 12
    • 80055033115 scopus 로고    scopus 로고
    • Integration of multiple networks for robust label propagation
    • Kato, T.; Kashima, H.; and Sugiyama, M. 2008. Integration of multiple networks for robust label propagation. In Proc. of SDM'08.
    • (2008) Proc. of SDM'08
    • Kato, T.1    Kashima, H.2    Sugiyama, M.3
  • 13
    • 77951183170 scopus 로고    scopus 로고
    • Stacked graphical models for effecient inference for markov random fields
    • Kou, Z., and Cohen, W. W. 2007. Stacked graphical models for effecient inference for markov random fields. In Proc. of SDM'07.
    • (2007) Proc. of SDM'07
    • Kou, Z.1    Cohen, W. W.2
  • 14
    • 77956237543 scopus 로고    scopus 로고
    • Improving learning in networked data by combining explicit and mined links
    • Macskassy, S. 2007. Improving learning in networked data by combining explicit and mined links. In Proc. of AAAI'07.
    • (2007) Proc. of AAAI'07
    • Macskassy, S.1
  • 15
    • 34249042076 scopus 로고    scopus 로고
    • Leveraging relational autocorrelation with latent group models
    • Neville, J., and Jensen, D. 2005. Leveraging relational autocorrelation with latent group models. In Proc. of ICDM'05, 322-329.
    • (2005) Proc. of ICDM'05 , pp. 322-329
    • Neville, J.1    Jensen, D.2
  • 17
    • 50649124443 scopus 로고    scopus 로고
    • A bias/variance decomposition for models using collective inference
    • Neville, J., and Jensen, D. 2008. A bias/variance decomposition for models using collective inference. Machine Learning Journal.
    • (2008) Machine Learning Journal
    • Neville, J.1    Jensen, D.2
  • 20
    • 27544435126 scopus 로고    scopus 로고
    • Fast protein classification with multiple networks
    • Tsuda, K.; Shin, H.; and Scholkoopf, B. 2005. Fast protein classification with multiple networks. Bioinformatics 21.
    • (2005) Bioinformatics , vol.21
    • Tsuda, K.1    Shin, H.2    Scholkoopf, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.