-
1
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer, E., and Kohavi, R. 1999. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36.
-
(1999)
Machine Learning
, vol.36
-
-
Bauer, E.1
Kohavi, R.2
-
2
-
-
0031620208
-
Combining labeled and unlabeled data with co-training
-
Blum, A., and Mitchell, T. 1998. Combining labeled and unlabeled data with co-training. In Proc. of CLT'98.
-
(1998)
Proc. of CLT'98
-
-
Blum, A.1
Mitchell, T.2
-
3
-
-
84974722422
-
Diversity versus quality in classification ensembles based on feature selection
-
Cunningham, P., and Carney, J. 2000. Diversity versus quality in classification ensembles based on feature selection. In Machine Learning: ECML 2000, volume 1810, 109-116.
-
(2000)
Machine Learning: ECML 2000
, vol.1810
, pp. 109-116
-
-
Cunningham, P.1
Carney, J.2
-
4
-
-
0002900451
-
Ensemble methods in machine learning
-
Dietterich, T. 2000. Ensemble methods in machine learning. In Proc. of MCS'00.
-
(2000)
Proc. of MCS'00
-
-
Dietterich, T.1
-
7
-
-
67049098006
-
Why stacked models perform effective collective classification
-
Fast, A., and Jensen, D. 2008. Why stacked models perform effective collective classification. In Proc. of ICDM'08.
-
(2008)
Proc. of ICDM'08
-
-
Fast, A.1
Jensen, D.2
-
8
-
-
21744462998
-
On bias, variance, 0/1-loss, and the curse-of-dimensionality
-
Friedman, J. 1997. On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery 1(1).
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, Issue.1
-
-
Friedman, J.1
-
10
-
-
84863338443
-
Graph-based consensus maximization among multiple supervised and unsupervised models
-
Gao, J.; Liang, F.; Fan, W.; Sun, Y.; and Han, J. 2009. Graph-based consensus maximization among multiple supervised and unsupervised models. In Proc. of NIPS'09.
-
(2009)
Proc. of NIPS'09
-
-
Gao, J.1
Liang, F.2
Fan, W.3
Sun, Y.4
Han, J.5
-
12
-
-
80055033115
-
Integration of multiple networks for robust label propagation
-
Kato, T.; Kashima, H.; and Sugiyama, M. 2008. Integration of multiple networks for robust label propagation. In Proc. of SDM'08.
-
(2008)
Proc. of SDM'08
-
-
Kato, T.1
Kashima, H.2
Sugiyama, M.3
-
13
-
-
77951183170
-
Stacked graphical models for effecient inference for markov random fields
-
Kou, Z., and Cohen, W. W. 2007. Stacked graphical models for effecient inference for markov random fields. In Proc. of SDM'07.
-
(2007)
Proc. of SDM'07
-
-
Kou, Z.1
Cohen, W. W.2
-
14
-
-
77956237543
-
Improving learning in networked data by combining explicit and mined links
-
Macskassy, S. 2007. Improving learning in networked data by combining explicit and mined links. In Proc. of AAAI'07.
-
(2007)
Proc. of AAAI'07
-
-
Macskassy, S.1
-
15
-
-
34249042076
-
Leveraging relational autocorrelation with latent group models
-
Neville, J., and Jensen, D. 2005. Leveraging relational autocorrelation with latent group models. In Proc. of ICDM'05, 322-329.
-
(2005)
Proc. of ICDM'05
, pp. 322-329
-
-
Neville, J.1
Jensen, D.2
-
17
-
-
50649124443
-
A bias/variance decomposition for models using collective inference
-
Neville, J., and Jensen, D. 2008. A bias/variance decomposition for models using collective inference. Machine Learning Journal.
-
(2008)
Machine Learning Journal
-
-
Neville, J.1
Jensen, D.2
-
19
-
-
53749083869
-
Collective classification in network data
-
Sen, P.; Namata, G. M.; Bilgic, M.; Getoor, L.; Gallagher, B.; and Eliassi-Rad, T. 2008. Collective classification in network data. AI Magazine 29(3):93-106.
-
(2008)
AI Magazine
, vol.29
, Issue.3
, pp. 93-106
-
-
Sen, P.1
Namata, G. M.2
Bilgic, M.3
Getoor, L.4
Gallagher, B.5
Eliassi-Rad, T.6
-
20
-
-
27544435126
-
Fast protein classification with multiple networks
-
Tsuda, K.; Shin, H.; and Scholkoopf, B. 2005. Fast protein classification with multiple networks. Bioinformatics 21.
-
(2005)
Bioinformatics
, vol.21
-
-
Tsuda, K.1
Shin, H.2
Scholkoopf, B.3
|