-
2
-
-
0031625423
-
Learning to extract symbolic knowledge from the world wide web
-
Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K., & Slattery, S. (1998). Learning to extract symbolic knowledge from the world wide web. In Proceedings of the 15th national conference on artificial intelligence (pp. 509-516).
-
(1998)
Proceedings of the 15th National Conference on Artificial Intelligence
, pp. 509-516
-
-
Craven, M.1
Dipasquo, D.2
Freitag, D.3
McCallum, A.4
Mitchell, T.5
Nigam, K.6
Slattery, S.7
-
4
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29, 103-130.
-
(1997)
Machine Learning
, vol.29
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
6
-
-
21744462998
-
On bias, variance, 0/1-loss, and the curse-of-dimensionality
-
1
-
Friedman, J. (1997). On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery, 1(1), 55-77.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, pp. 55-77
-
-
Friedman, J.1
-
7
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilemma. Neural Computation, 4, 1-58.
-
(1992)
Neural Computation
, vol.4
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
8
-
-
0041779094
-
Learning probabilistic relational models
-
Springer Berlin
-
Getoor, L., Friedman, N., Koller, D., & Pfeffer, A. (2001). Learning probabilistic relational models. In Relational data mining (pp. 307-335). Berlin: Springer.
-
(2001)
Relational Data Mining
, pp. 307-335
-
-
Getoor, L.1
Friedman, N.2
Koller, D.3
Pfeffer, A.4
-
10
-
-
0002123103
-
Dependency networks for inference, collaborative filtering and data visualization
-
Heckerman, D., Chickering, D., Meek, C., Rounthwaite, R., & Kadie, C. (2000). Dependency networks for inference, collaborative filtering and data visualization. Journal of Machine Learning Research, 1, 49-75.
-
(2000)
Journal of Machine Learning Research
, vol.1
, pp. 49-75
-
-
Heckerman, D.1
Chickering, D.2
Meek, C.3
Rounthwaite, R.4
Kadie, C.5
-
11
-
-
33748544940
-
Network-based marketing: Identifying likely adopters via consumer networks
-
Hill, S., Provost, F., & Volinsky, C. (2006). Network-based marketing: identifying likely adopters via consumer networks. Statistical Science, 22(2).
-
(2006)
Statistical Science
, vol.22
, Issue.2
-
-
Hill, S.1
Provost, F.2
Volinsky, C.3
-
12
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datatsets
-
Holte, R. (1993). Very simple classification rules perform well on most commonly used datatsets. Machine Learning, 11, 63-91.
-
(1993)
Machine Learning
, vol.11
, pp. 63-91
-
-
Holte, R.1
-
13
-
-
0037403462
-
Variance and bias for general loss functions
-
James, G. (2003). Variance and bias for general loss functions. Machine Learning, 51, 115-135.
-
(2003)
Machine Learning
, vol.51
, pp. 115-135
-
-
James, G.1
-
16
-
-
34249102504
-
Classification in networked data: A toolkit and a univariate case study
-
Macskassy, S., & Provost, F. (2007). Classification in networked data: a toolkit and a univariate case study. Journal of Machine Learning Research, 8, 935-983.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 935-983
-
-
MacSkassy, S.1
Provost, F.2
-
17
-
-
84880652043
-
A machine learning approach to building domain-specific search engines
-
McCallum, A., Nigam, K., Rennie, J., & Seymore, K. (1999). A machine learning approach to building domain-specific search engines. In Proceedings of the 16th international joint conference on artificial intelligence (pp. 662-667).
-
(1999)
Proceedings of the 16th International Joint Conference on Artificial Intelligence
, pp. 662-667
-
-
McCallum, A.1
Nigam, K.2
Rennie, J.3
Seymore, K.4
-
18
-
-
0002425879
-
Loopy belief propagation for approximate inference: An empirical study
-
Murphy, K., Weiss, Y., & Jordan, M. (1999). Loopy belief propagation for approximate inference: an empirical study. In Proceedings of the 15th conference on uncertainty in artificial intelligence (pp. 467-479).
-
(1999)
Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence
, pp. 467-479
-
-
-
21
-
-
77952399122
-
Learning relational probability trees
-
Neville, J., Jensen, D., Friedland, L., & Hay, M. (2003). Learning relational probability trees. In Proceedings of the 9th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 625-630).
-
(2003)
Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 625-630
-
-
Neville, J.1
Jensen, D.2
Friedland, L.3
Hay, M.4
-
23
-
-
75149128575
-
Estimating the "wrong" Markov random field: Benefits in the computation-limited setting
-
Wainwright, M. (2005). Estimating the "wrong" Markov random field: benefits in the computation-limited setting. In Advances in neural information processing systems.
-
(2005)
Advances in Neural Information Processing Systems
-
-
Wainwright, M.1
|