메뉴 건너뛰기




Volumn , Issue , 2008, Pages 204-211

Multi-view learning over structured and non-identical outputs

Author keywords

[No Author keywords available]

Indexed keywords

BHATTACHARYYA DISTANCE; LABELED TRAINING DATA; MACHINE LEARNING PROBLEM; MULTI-VIEW LEARNING; MULTIPLE VIEWS; PERCEPTRON; UNLABELED DATA;

EID: 72449138529     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (39)

References (25)
  • 1
    • 68949104188 scopus 로고    scopus 로고
    • Discriminative learning for label sequences via boosting
    • MIT Press
    • Altun, Y., Hofmann, T., & Johnson, M. Discriminative learning for label sequences via boosting. In NIPS 15. MIT Press, 2002.
    • (2002) NIPS , vol.15
    • Altun, Y.1    Hofmann, T.2    Johnson, M.3
  • 2
    • 85113387701 scopus 로고    scopus 로고
    • Investigating loss functions and optimization methods for discriminative learning of label sequences
    • Altun, Y., Johnson, M., & Hofmann, T. Investigating loss functions and optimization methods for discriminative learning of label sequences. In Proc. EMNLP. ACL, 2003.
    • (2003) Proc. EMNLP. ACL
    • Altun, Y.1    Johnson, M.2    Hofmann, T.3
  • 3
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Ando, R. K. & Zhang, T. A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research, 6:pp. 1817-1853, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 4
    • 33745832304 scopus 로고    scopus 로고
    • A PAC-style model for learning from labeled and unlabeled data
    • Balcan, M. & Blum, A. A PAC-style model for learning from labeled and unlabeled data. In Proc. COLT. 2005.
    • (2005) Proc. COLT
    • Balcan, M.1    Blum, A.2
  • 5
    • 84860524227 scopus 로고    scopus 로고
    • Bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
    • Blitzer, J., Dredze, M., & Pereira, F. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In Proc. ACL. ACL, 2007.
    • (2007) Proc. ACL. ACL
    • Blitzer, J.1    Dredze, M.2    Biographies, P.F.3
  • 6
    • 80053342456 scopus 로고    scopus 로고
    • Domain adaptation with structural correspondence learning
    • Blitzer, J., McDonald, R., & Pereira, F. Domain adaptation with structural correspondence learning. In Proc. EMNLP. 2006.
    • (2006) Proc. EMNLP
    • Blitzer, J.1    McDonald, R.2    Pereira, F.3
  • 7
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • Blum, A. & Mitchell, T. Combining labeled and unlabeled data with co-training. In COLT. 1998.
    • (1998) COLT
    • Blum, A.1    Mitchell, T.2
  • 8
    • 0020192214 scopus 로고
    • A multiplicative formula for aggregating probability assessments
    • Bordley, R. F. A multiplicative formula for aggregating probability assessments. Management Science, 28(10):pp. 1137-1148, 1982.
    • (1982) Management Science , vol.28 , Issue.10 , pp. 1137-1148
    • Bordley, R.F.1
  • 11
    • 85119383022 scopus 로고    scopus 로고
    • Unsupervised models for named entity classification
    • Collins, M. & Singer, Y. Unsupervised models for named entity classification. In Proc. SIGDATEMNLP. ACL, 1999.
    • (1999) Proc. SIGDATEMNLP. ACL
    • Collins, M.1    Singer, Y.2
  • 12
    • 85162012703 scopus 로고    scopus 로고
    • Expectation maximization and posterior constraints
    • MIT Press
    • Graca, J., Ganchev, K., & Taskar, B. Expectation maximization and posterior constraints. In NIPS 20. MIT Press, 2008.
    • (2008) NIPS 20
    • Graca, J.1    Ganchev, K.2    Taskar, B.3
  • 13
    • 84860537772 scopus 로고    scopus 로고
    • Semi-supervised conditional random fields for improved sequence segmentation and labeling
    • ACL, Morristown, NJ, USA
    • Jiao, F., Wang, S., Lee, C.-H., Greiner, R., & Schuurmans, D. Semi-supervised conditional random fields for improved sequence segmentation and labeling. In Proc. ACL, pp. 209-216. ACL, Morristown, NJ, USA, 2006.
    • (2006) Proc. ACL , pp. 209-216
    • Jiao, F.1    Wang, S.2    Lee, C.-H.3    Greiner, R.4    Schuurmans, D.5
  • 14
    • 65249157560 scopus 로고
    • The divergence and bhattacharyya distance measures in signal selection
    • Kailath, T. The divergence and bhattacharyya distance measures in signal selection. IEEE Transactions on Communications, 15(1):pp. 52-60, 1967.
    • (1967) IEEE Transactions on Communications , vol.15 , Issue.1 , pp. 52-60
    • Kailath, T.1
  • 15
    • 38049026697 scopus 로고    scopus 로고
    • Multi-view regression via canonical correlation analysis
    • Springer Berlin / Heidelberg
    • Kakade, S. & Foster, D. Multi-view regression via canonical correlation analysis. In Learning Theory, vol. 4539. Springer Berlin / Heidelberg, 2007.
    • (2007) Learning Theory , vol.4539
    • Kakade, S.1    Foster, D.2
  • 16
    • 85142688646 scopus 로고
    • Newsweeder: Learning to filter netnews
    • Lang, K. Newsweeder: Learning to filter netnews. In Proc. ICML. 1995.
    • (1995) Proc. ICML
    • Lang, K.1
  • 17
    • 56449123826 scopus 로고    scopus 로고
    • Simple robust, scalable semi-supervised learning via expectation regularization
    • Mann, G. S. & McCallum, A. Simple, robust, scalable semi-supervised learning via expectation regularization. In Proc. ICML. 2007.
    • (2007) Proc. ICML
    • Mann, G.S.1    McCallum, A.2
  • 19
    • 2142727946 scopus 로고    scopus 로고
    • Limitations of co-training for natural language learning from large datasets
    • Pierce, D. & Cardie, C. Limitations of co-training for natural language learning from large datasets. In Proc. EMNLP. 2001.
    • (2001) Proc. EMNLP
    • Pierce, D.1    Cardie, C.2
  • 20
    • 70349185610 scopus 로고    scopus 로고
    • The rademacher complexity of co-regularized kernel classes
    • M. Meila & X. Shen, eds.
    • Rosenberg, D. & Bartlett, P. The rademacher complexity of co-regularized kernel classes. In M. Meila & X. Shen, eds., Proc. AI Stats. 2007.
    • (2007) Proc. AI Stats.
    • Rosenberg, D.1    Bartlett, P.2
  • 22
    • 85099019865 scopus 로고    scopus 로고
    • Introduction to the conll-2003 shared task: Language-independent named entity recognition
    • Sang, E. F. T. K. & Meulder, F. D. Introduction to the conll-2003 shared task: language-independent named entity recognition. In Proc. HLT-NAACL. ACL, 2003.
    • (2003) Proc. HLT-NAACL. ACL
    • Sang, E.F.T.K.1    Meulder, F.D.2
  • 24
    • 33645977859 scopus 로고    scopus 로고
    • Logarithmic opinion pools for conditional random fields
    • Smith, A., Cohn, T., & Osborne, M. Logarithmic opinion pools for conditional random fields. In Proc. ACL. ACL, 2005.
    • (2005) Proc. ACL. ACL
    • Smith, A.1    Cohn, T.2    Osborne, M.3
  • 25
    • 85071661854 scopus 로고    scopus 로고
    • Semi-supervised structured output learning based on a hybrid generative and discriminative approach
    • Suzuki, J., Fujino, A., & Isozaki, H. Semi-supervised structured output learning based on a hybrid generative and discriminative approach. In Proc. EMNLP-CoNLL. 2007.
    • (2007) Proc. EMNLP-CoNLL
    • Suzuki, J.1    Fujino, A.2    Isozaki, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.