메뉴 건너뛰기




Volumn 20, Issue 4-5, 2011, Pages 185-193

Multi-Agent-Based Anomaly Intrusion Detection

Author keywords

IDS; multi agents; network security; SVM

Indexed keywords

ANOMALY INTRUSION DETECTION; CYBER SECURITY; IDS; INTRUSION DETECTION SYSTEMS; LOCAL SYSTEM; MULTI AGENT; NEIGHBORING NODES; PROTECT INFORMATION; SVM; SVM CLASSIFIERS; VIRUS ATTACKS;

EID: 84860866499     PISSN: 19393555     EISSN: 19393547     Source Type: Journal    
DOI: 10.1080/19393555.2011.589424     Document Type: Article
Times cited : (12)

References (38)
  • 1
    • 84860846613 scopus 로고    scopus 로고
    • Anomaly intrusion detection in wireless sensor networks. Special issue on trusted Internet workshop (TIW) 2004
    • Bhuse, V. and Gupta, A. 2006. Anomaly intrusion detection in wireless sensor networks. Special issue on trusted Internet workshop (TIW) 2004. Journal of High Speed Networks, 151.
    • (2006) Journal of High Speed Networks , pp. 151
    • Bhuse, V.1    Gupta, A.2
  • 8
    • 0036930259 scopus 로고    scopus 로고
    • Using data mining to discover signatures in network-based intrusion detection
    • Han, H., Lu, X. L. and Ren, L. Y. 2002. Using data mining to discover signatures in network-based intrusion detection. Proc. Int. Conf. Mach. Learn. Cybern., 1: 13-17.
    • (2002) Proc. Int. Conf. Mach. Learn. Cybern. , vol.1 , pp. 13-17
    • Han, H.1    Lu, X.L.2    Ren, L.Y.3
  • 9
    • 33744529638 scopus 로고    scopus 로고
    • Evolutionary neural networks for anomaly detection based on the behavior of a program
    • Han, S. J. and Cho, S. B. 2006. Evolutionary neural networks for anomaly detection based on the behavior of a program. IEEE Trans. Syst., Man, Cybern. B, Cybern., 36(3) June: 559-570.
    • (2006) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.36 , Issue.3 , pp. 559-570
    • Han, S.J.1    Cho, S.B.2
  • 11
    • 0033683805 scopus 로고    scopus 로고
    • A computer host-based user anomaly detection system using the self-organizing map
    • Hoglund, A. J., Hatonen, K. and Sorvari, A. S. 2000. A computer host-based user anomaly detection system using the self-organizing map. Proc. Int. Joint Conf. Neural Netw., 5: 411-416.
    • (2000) Proc. Int. Joint Conf. Neural Netw. , vol.5 , pp. 411-416
    • Hoglund, A.J.1    Hatonen, K.2    Sorvari, A.S.3
  • 12
    • 33644860127 scopus 로고    scopus 로고
    • A clustering-based method for unsupervised intrusion detections
    • Jiang, S., Song, X., Wang, H., Han, J. and Li, Q. 2006. A clustering-based method for unsupervised intrusion detections. Pattern Recognit. Lett., 27(7) May: 802-810.
    • (2006) Pattern Recognit. Lett. , vol.27 , Issue.7 , pp. 802-810
    • Jiang, S.1    Song, X.2    Wang, H.3    Han, J.4    Li, Q.5
  • 13
    • 27544512530 scopus 로고    scopus 로고
    • Data mining for intrusion detection: A critical review
    • Julish, K. 2002. Data mining for intrusion detection: A critical review. IBM,: 33-57.
    • (2002) IBM , pp. 33-57
    • Julish, K.1
  • 15
    • 84946216263 scopus 로고    scopus 로고
    • Utilizing statistical characteristics of N-grams for intrusion detection
    • Li, Z. W., Das, A. and Nandi, S. 2003. Utilizing statistical characteristics of N-grams for intrusion detection. Proc. Int. Conf. Cyberworlds, December: 486-493.
    • (2003) Proc. Int. Conf. Cyberworlds , pp. 486-493
    • Li, Z.W.1    Das, A.2    Nandi, S.3
  • 18
    • 34748906584 scopus 로고    scopus 로고
    • A Bayesian game approach for intrusion detection in wireless ad hoc networks
    • Liu, Y., Comaniciu, C. and Man, H. 2006. A Bayesian game approach for intrusion detection in wireless ad hoc networks. ACM,: 159593507X
    • (2006) ACM
    • Liu, Y.1    Comaniciu, C.2    Man, H.3
  • 19
    • 11144275989 scopus 로고    scopus 로고
    • Support vector classifiers and network intrusion detection
    • Mill, J. and Inoue, A. 2004. Support vector classifiers and network intrusion detection. Proc. Int. Conf. Fuzzy Syst., 1: 407-410.
    • (2004) Proc. Int. Conf. Fuzzy Syst. , vol.1 , pp. 407-410
    • Mill, J.1    Inoue, A.2
  • 20
    • 1842665110 scopus 로고    scopus 로고
    • Virginia Tech intrusion detection in wireless ad hoc networks
    • Mishra, A., Nadkarni, K. and Patcha, A. 2004. Virginia Tech intrusion detection in wireless ad hoc networks. IEEE Wireless Communications, February: 48-60.
    • (2004) IEEE Wireless Communications , pp. 48-60
    • Mishra, A.1    Nadkarni, K.2    Patcha, A.3
  • 22
    • 0036085392 scopus 로고    scopus 로고
    • Intrusion detection using neural networks and support vector machines
    • Mukkamala, S., Janoski, G. and Sung, A. H. 2002. Intrusion detection using neural networks and support vector machines. Proc. Int. Joint Conf. Neural Netw., 2: 1702-1707.
    • (2002) Proc. Int. Joint Conf. Neural Netw. , vol.2 , pp. 1702-1707
    • Mukkamala, S.1    Janoski, G.2    Sung, A.H.3
  • 23
    • 33646553013 scopus 로고    scopus 로고
    • Fast distributed outlier detection in mixed-attribute data sets
    • Otey, M. E., Ghoting, A. and Parthasarathy, S. 2006. Fast distributed outlier detection in mixed-attribute data sets. Data Min. Knowl. Discov., 12(2/3) May: 203-228.
    • (2006) Data Min. Knowl. Discov. , vol.12 , Issue.2-3 , pp. 203-228
    • Otey, M.E.1    Ghoting, A.2    Parthasarathy, S.3
  • 26
    • 0141682918 scopus 로고    scopus 로고
    • Intrusion detection using radial basis function network on sequences of system calls
    • Rapaka, A., Novokhodko, A. and Wunsch, D. 2003. Intrusion detection using radial basis function network on sequences of system calls. Proc. Int. Joint Conf. Neural Netw., 3: 1820-1825.
    • (2003) Proc. Int. Joint Conf. Neural Netw. , vol.3 , pp. 1820-1825
    • Rapaka, A.1    Novokhodko, A.2    Wunsch, D.3
  • 27
    • 17444432965 scopus 로고    scopus 로고
    • Hierarchical Kohonenen net for anomaly detection in network security
    • Sarasamma, S. T., Zhu, Q. A. and Huff, J. 2005. Hierarchical Kohonenen net for anomaly detection in network security. IEEE Trans. Syst., Man, Cybern. B, Cybern., 35(2) April: 302-312.
    • (2005) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.35 , Issue.2 , pp. 302-312
    • Sarasamma, S.T.1    Zhu, Q.A.2    Huff, J.3
  • 30
    • 4143141932 scopus 로고    scopus 로고
    • Signature-based intrusion detection for wireless ad-hoc networks: A comparative study of various routing protocols
    • Subhadrabandhu, F. A. D. and Sarkar, S. 2008. Signature-based intrusion detection for wireless ad-hoc networks: A comparative study of various routing protocols. Seas, 3(6): 2152-2156.
    • (2008) Seas , vol.3 , Issue.6 , pp. 2152-2156
    • Subhadrabandhu, F.A.D.1    Sarkar, S.2
  • 31
    • 34250761381 scopus 로고    scopus 로고
    • Integration of mobility and intrusion detection for wireless ad hoc networks
    • Sun, B., Wu, K., Xiao, Y. and Wang, R. 2006. Integration of mobility and intrusion detection for wireless ad hoc networks. International Journal of Communications Systems, 20(6): 695-721.
    • (2006) International Journal of Communications Systems , vol.20 , Issue.6 , pp. 695-721
    • Sun, B.1    Wu, K.2    Xiao, Y.3    Wang, R.4
  • 32
  • 33
    • 78149332866 scopus 로고    scopus 로고
    • A sort of multi-agent cooperation distributed based intrusion detection system
    • Wang, Y. 2008. A sort of multi-agent cooperation distributed based intrusion detection system. Modern Computer, 12: 38-43.
    • (2008) Modern Computer , vol.12 , pp. 38-43
    • Wang, Y.1
  • 34
    • 28444479146 scopus 로고    scopus 로고
    • A novel intrusion detection method based on clonal selection clustering algorithm
    • Xian, J., Lang, F. and Tang, X. 2005. A novel intrusion detection method based on clonal selection clustering algorithm. Proc. Int. Conf. Mach. Learn. Cybern., 6: 3905-3910.
    • (2005) Proc. Int. Conf. Mach. Learn. Cybern. , vol.6 , pp. 3905-3910
    • Xian, J.1    Lang, F.2    Tang, X.3
  • 35
    • 1942436335 scopus 로고    scopus 로고
    • Robustness of the Markov-chain model for cyber-attack detection
    • Ye, N., Zhang, Y. and Borror, C. M. 2004. Robustness of the Markov-chain model for cyber-attack detection. IEEE Trans. Rel., 53(1) March: 116-123.
    • (2004) IEEE Trans. Rel. , vol.53 , Issue.1 , pp. 116-123
    • Ye, N.1    Zhang, Y.2    Borror, C.M.3
  • 36
    • 0037209446 scopus 로고    scopus 로고
    • Host-based intrusion detection using dynamic and static behavioral models
    • Yeung, D. and Ding, Y. 2003. Host-based intrusion detection using dynamic and static behavioral models. Pattern Recognit., 36(1) January: 229-243.
    • (2003) Pattern Recognit. , vol.36 , Issue.1 , pp. 229-243
    • Yeung, D.1    Ding, Y.2
  • 37
    • 15944375471 scopus 로고    scopus 로고
    • Intrusion detection using hierarchical neural networks
    • Zhang, C., Jiang, J. and Kamel, M. 2005. Intrusion detection using hierarchical neural networks. Pattern Recognit. Lett., 26(6) May: 779-791.
    • (2005) Pattern Recognit. Lett. , vol.26 , Issue.6 , pp. 779-791
    • Zhang, C.1    Jiang, J.2    Kamel, M.3
  • 38
    • 3042663739 scopus 로고    scopus 로고
    • Online training of SVMs for real-time intrusion detection
    • Zhang, Z. and Shen, H. 2004. Online training of SVMs for real-time intrusion detection. Proc. Int. Conf. Adv. Inf. Netw. Appl., 1: 568-573.
    • (2004) Proc. Int. Conf. Adv. Inf. Netw. Appl. , vol.1 , pp. 568-573
    • Zhang, Z.1    Shen, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.