메뉴 건너뛰기




Volumn , Issue , 2005, Pages 137-183

Biomedical-image classification methods and techniques

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84860569545     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/9780203500453-8     Document Type: Chapter
Times cited : (3)

References (141)
  • 1
    • 0003821967 scopus 로고    scopus 로고
    • Medical Image Processing and Analysis, SPIE Press, Bellingham, WA
    • Sonka, M. and Fitzpatrick, J.M., Eds., Handbook of Medical Imaging, Vol. 2, Medical Image Processing and Analysis, SPIE Press, Bellingham, WA, 2000.
    • (2000) Handbook of Medical Imaging , vol.2
    • Sonka, M.1    Fitzpatrick, J.M.2
  • 2
    • 0002654838 scopus 로고    scopus 로고
    • Image segmentation
    • Medical Image Processing and Analysis, Sonka, M. and Fitzpatrick, J.M., Eds., SPIE Press, Bellingham, WA
    • Dawant, B.M. and Zidenbos, A.P., Image segmentation, in Handbook of Medical Imaging, Vol. 2, Medical Image Processing and Analysis, Sonka, M. and Fitzpatrick, J.M., Eds., SPIE Press, Bellingham, WA, 2000.
    • (2000) Handbook of Medical Imaging , vol.2
    • Dawant, B.M.1    Zidenbos, A.P.2
  • 4
    • 0023477641 scopus 로고
    • Some nonstandard clustering algorithms
    • Legendre, P. and Legendre, L., Eds., Springer-Verlag, Berlin
    • Bezdek, J.C., Some nonstandard clustering algorithms, in Developments in Numerical Ecology, Legendre, P. and Legendre, L., Eds., Springer-Verlag, Berlin, 1987, pp. 225-287.
    • (1987) Developments in Numerical Ecology , pp. 225-287
    • Bezdek, J.C.1
  • 12
    • 0026409985 scopus 로고
    • Knowledge-based 3-D analysis from 2-D medical images
    • Dhawan, A.P. and Arata, L., Knowledge-based 3-D analysis from 2-D medical images, IEEE Eng. Medicine Biol. Mag., 10, 30-37, 1991.
    • (1991) IEEE Eng. Medicine Biol. Mag. , vol.10 , pp. 30-37
    • Dhawan, A.P.1    Arata, L.2
  • 13
    • 0029325981 scopus 로고
    • Segmentation of brain parenchyma and cerebrospinal fluid in multispectral magnetic resonance images
    • Lundervold, A. and Storvik, G., Segmentation of brain parenchyma and cerebrospinal fluid in multispectral magnetic resonance images, IEEE Trans. Medical Imaging, 14, 339-349, 1995.
    • (1995) IEEE Trans. Medical Imaging , vol.14 , pp. 339-349
    • Lundervold, A.1    Storvik, G.2
  • 14
    • 0030170071 scopus 로고    scopus 로고
    • Segmentation of functional MRI by kmeans clustering
    • Singh, M., Patel, P., Khosla, D., and Kim, T., Segmentation of functional MRI by kmeans clustering, IEEE Trans. Nucl. Sci., 43, 2030-2036, 1996.
    • (1996) IEEE Trans. Nucl. Sci. , vol.43 , pp. 2030-2036
    • Singh, M.1    Patel, P.2    Khosla, D.3    Kim, T.4
  • 15
    • 0242365479 scopus 로고    scopus 로고
    • A new approach for improving diagnostic accuracy in Alzheimer’s disease and frontal lobe dementia utilising the intrinsic properties of the SPET dataset
    • Epub ahead of print
    • Pagani, M., Kovalev, V.A., Lundqvist, R., Jacobsson, H., Larsson, S.A., and Thurfjell, L., A new approach for improving diagnostic accuracy in Alzheimer’s disease and frontal lobe dementia utilising the intrinsic properties of the SPET dataset., Eur. J. Nucl. Med. Mol. Imaging, [Epub ahead of print], 2003.
    • (2003) Eur. J. Nucl. Med. Mol. Imaging
    • Pagani, M.1    Kovalev, V.A.2    Lundqvist, R.3    Jacobsson, H.4    Larsson, S.A.5    Thurfjell, L.6
  • 16
    • 0030572291 scopus 로고    scopus 로고
    • Region growing segmentation of textured cell images
    • Wu, H.-S., Barba, J., and Gil, J., Region growing segmentation of textured cell images, Electron. Lett., 32, 1084-1085, 1996.
    • (1996) Electron. Lett. , vol.32 , pp. 1084-1085
    • Wu, H.-S.1    Barba, J.2    Gil, J.3
  • 17
    • 0031838690 scopus 로고    scopus 로고
    • Analysis of tearprotein patterns as a diagnostic tool for the detection of dry eyes
    • Grus, F.H., Augustin, A.J., Evangelou, N.G., and Toth-Sagi, K., Analysis of tearprotein patterns as a diagnostic tool for the detection of dry eyes, Eur. J. Ophthalmol., 8, 90-97, 1998.
    • (1998) Eur. J. Ophthalmol. , vol.8 , pp. 90-97
    • Grus, F.H.1    Augustin, A.J.2    Evangelou, N.G.3    Toth-Sagi, K.4
  • 18
    • 0025435177 scopus 로고
    • A hybrid classifier for automated radiologic diagnosis: Preliminary results and clinical applications
    • Herskovits, E., A hybrid classifier for automated radiologic diagnosis: preliminary results and clinical applications, Comput. Methods Programs Biomed., 32, 45-52, 1990.
    • (1990) Comput. Methods Programs Biomed. , vol.32 , pp. 45-52
    • Herskovits, E.1
  • 20
    • 0033973476 scopus 로고    scopus 로고
    • Automated segmentation of multiple sclerosis lesions in multispectral MR imaging using fuzzy clustering
    • Boudraa, A.O., Dehak, S.M., Zhu, Y.M., Pachai, C., Bao, Y.G., and Grimaud, J., Automated segmentation of multiple sclerosis lesions in multispectral MR imaging using fuzzy clustering, Comput. Biol. Med. 2000, 30, 23-40, 2000.
    • (2000) Comput. Biol. Med. 2000 , vol.30 , pp. 23-40
    • Boudraa, A.O.1    Dehak, S.M.2    Zhu, Y.M.3    Pachai, C.4    Bao, Y.G.5    Grimaud, J.6
  • 22
    • 0036489378 scopus 로고    scopus 로고
    • A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
    • Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., and Moriarty, T., A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data, IEEE Trans. Medical Imaging, 21, 193-199, 2002.
    • (2002) IEEE Trans. Medical Imaging , vol.21 , pp. 193-199
    • Ahmed, M.N.1    Yamany, S.M.2    Mohamed, N.3    Farag, A.A.4    Moriarty, T.5
  • 23
    • 0033181293 scopus 로고    scopus 로고
    • Adaptive fuzzy segmentation of magnetic resonance images
    • Pham, D.L. and Prince, J.L., Adaptive fuzzy segmentation of magnetic resonance images, IEEE Trans. Medical Imaging, 18, 737-752, 1999.
    • (1999) IEEE Trans. Medical Imaging , vol.18 , pp. 737-752
    • Pham, D.L.1    Prince, J.L.2
  • 24
    • 0037347070 scopus 로고    scopus 로고
    • Multicontext fuzzy clustering for separation of brain tissues in magnetic resonance images
    • Zhu, C. and Jiang, T., Multicontext fuzzy clustering for separation of brain tissues in magnetic resonance images, Neuroimage, 18, 685-696, 2003.
    • (2003) Neuroimage , vol.18 , pp. 685-696
    • Zhu, C.1    Jiang, T.2
  • 25
    • 0037855975 scopus 로고    scopus 로고
    • Modified magnetic resonance image-based parcellation method for cerebral cortex using successive fuzzy clustering and boundary detection
    • Yoon, U., Lee, J.M., Kim, J.J., Lee, S.M., Kim, I.Y., Kwon, J.S., and Kim, S.I., Modified magnetic resonance image-based parcellation method for cerebral cortex using successive fuzzy clustering and boundary detection, Ann. Biomed. Eng., 31, 441-447, 2003.
    • (2003) Ann. Biomed. Eng. , vol.31 , pp. 441-447
    • Yoon, U.1    Lee, J.M.2    Kim, J.J.3    Lee, S.M.4    Kim, I.Y.5    Kwon, J.S.6    Kim, S.I.7
  • 26
    • 0037035319 scopus 로고    scopus 로고
    • Fuzzy clustering-based segmented attenuation correction in whole-body PET imaging
    • Zaidi, H., Diaz-Gomez, M., Boudraa, A., and Slosman, D.O., Fuzzy clustering-based segmented attenuation correction in whole-body PET imaging, Phys. Med. Biol., 47, 1143-1160, 2002.
    • (2002) Phys. Med. Biol. , vol.47 , pp. 1143-1160
    • Zaidi, H.1    Diaz-Gomez, M.2    Boudraa, A.3    Slosman, D.O.4
  • 27
    • 0032987024 scopus 로고    scopus 로고
    • Automatic segmentation of dynamic neuroreceptor single-photon emission tomography images using fuzzy clustering
    • Acton, P.D., Pilowsky, L.S., Kung, H.F., and Ell, P.J., Automatic segmentation of dynamic neuroreceptor single-photon emission tomography images using fuzzy clustering, Eur. J. Nucl. Med., 26, 581-590, 1999.
    • (1999) Eur. J. Nucl. Med. , vol.26 , pp. 581-590
    • Acton, P.D.1    Pilowsky, L.S.2    Kung, H.F.3    Ell, P.J.4
  • 28
    • 0032587461 scopus 로고    scopus 로고
    • Segmentation of digitized dermatoscopic images by two-dimensional color clustering
    • Schmid, P., Segmentation of digitized dermatoscopic images by two-dimensional color clustering, IEEE Trans. Medical Imaging, 18, 164-171, 1999.
    • (1999) IEEE Trans. Medical Imaging , vol.18 , pp. 164-171
    • Schmid, P.1
  • 32
    • 0041428219 scopus 로고    scopus 로고
    • Obstructive lung diseases: Texture classification for differentiation at CT
    • Chabat, F., G.Z., Y., and Hansell, D.M., Obstructive lung diseases: texture classification for differentiation at CT, Radiology, 228, 871-877, 2003.
    • (2003) Radiology , vol.228 , pp. 871-877
    • Chabat, F.1    Hansell, D.M.2
  • 33
    • 0036148568 scopus 로고    scopus 로고
    • A comparison of material classification techniques for ultrasound inverse imaging
    • Zhang, X., Broschat, S.L., and Flynn, P.J., A comparison of material classification techniques for ultrasound inverse imaging, J. Acoust. Soc. Am., 111, 457-467, 2002.
    • (2002) J. Acoust. Soc. Am. , vol.111 , pp. 457-467
    • Zhang, X.1    Broschat, S.L.2    Flynn, P.J.3
  • 36
    • 0036978122 scopus 로고    scopus 로고
    • Tumor hypoxia and blood vessel detection: An image-analysis technique for simultaneous tumor hypoxia grading and blood vessel detection in tissue sections
    • Loukas, C.G., Wilson, G.D., Vojnovic, B., and Linney, A., Tumor hypoxia and blood vessel detection: an image-analysis technique for simultaneous tumor hypoxia grading and blood vessel detection in tissue sections, Ann. NY Acad. Sci., 980, 125-138, 2002.
    • (2002) Ann. NY Acad. Sci. , vol.980 , pp. 125-138
    • Loukas, C.G.1    Wilson, G.D.2    Vojnovic, B.3    Linney, A.4
  • 37
    • 0029377853 scopus 로고
    • Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images
    • Kamber, M., Shinghal, R., Collins, D.L., Francis, G.S., and Evans, A.C., Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images, IEEE Trans. Medical Imaging, 14, 442-453, 1995.
    • (1995) IEEE Trans. Medical Imaging , vol.14 , pp. 442-453
    • Kamber, M.1    Shinghal, R.2    Collins, D.L.3    Francis, G.S.4    Evans, A.C.5
  • 40
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J.R., Induction of decision trees, Machine Learning, 1, 81-106, 1986.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 41
    • 0031747822 scopus 로고    scopus 로고
    • Classification of retinal damage by neural network-based system
    • Aleynikov, S. and Micheli-Tzanakou, E., Classification of retinal damage by neural network-based system, J. Medical Systems, 22, 129-136, 1998.
    • (1998) J. Medical Systems , vol.22 , pp. 129-136
    • Aleynikov, S.1    Micheli-Tzanakou, E.2
  • 42
    • 0026870427 scopus 로고
    • Optimisation neural networks for the segmentation of magnetic resonance images
    • Amartur, S.C., Piraino, D., and Takefuji, Y., Optimisation neural networks for the segmentation of magnetic resonance images, IEEE Trans. Medical Imaging, 11, 215-220, 1992.
    • (1992) IEEE Trans. Medical Imaging , vol.11 , pp. 215-220
    • Amartur, S.C.1    Piraino, D.2    Takefuji, Y.3
  • 43
    • 0031811455 scopus 로고    scopus 로고
    • Epiluminescence microscopy-based classification of pigmented skin lesions using computerized image analysis and artificial neural network
    • Binder, M., Kittler, H., Seeber, A., Steiner, A., Pehamberger, H., and Wolff, K., Epiluminescence microscopy-based classification of pigmented skin lesions using computerized image analysis and artificial neural network, Melanoma Res., 8, 261-266, 1998.
    • (1998) Melanoma Res. , vol.8 , pp. 261-266
    • Binder, M.1    Kittler, H.2    Seeber, A.3    Steiner, A.4    Pehamberger, H.5    Wolff, K.6
  • 44
    • 0027657294 scopus 로고
    • Neural network segmentation of magnetic resonance spin echo images of the brain
    • Cagnoni, S., Coppini, G., Rucci, M., Caramella, D., and Valli, G., Neural network segmentation of magnetic resonance spin echo images of the brain, J. Biomed. Eng., 15, 355-362, 1993.
    • (1993) J. Biomed. Eng. , vol.15 , pp. 355-362
    • Cagnoni, S.1    Coppini, G.2    Rucci, M.3    Caramella, D.4    Valli, G.5
  • 45
    • 0027746064 scopus 로고
    • Application of neural networks for the classification of diffuse liver disease by quantitative echography
    • Gebbinck, M.S., Verhoeven, J.T., Thijssen, J.M., and Schouten, T.E., Application of neural networks for the classification of diffuse liver disease by quantitative echography, Ultrasonic Imaging, 15, 205-217, 1993.
    • (1993) Ultrasonic Imaging , vol.15 , pp. 205-217
    • Gebbinck, M.S.1    Verhoeven, J.T.2    Thijssen, J.M.3    Schouten, T.E.4
  • 46
    • 0027662763 scopus 로고
    • Neural network-based segmentation of multimodal medical images: A comparative and prospective study
    • Özkan, M., Dawant, B.M., and Miciunas, R.J., Neural network-based segmentation of multimodal medical images: a comparative and prospective study, IEEE Trans. Medical Imaging, 12, 534-544, 1993.
    • (1993) IEEE Trans. Medical Imaging , vol.12 , pp. 534-544
    • Özkan, M.1    Dawant, B.M.2    Miciunas, R.J.3
  • 47
  • 48
    • 0030443396 scopus 로고    scopus 로고
    • Application of artificial neural networks for the classification of liver lesions by texture parameters
    • Sujana, H., Swarnamani, S., and Suresh, S., Application of artificial neural networks for the classification of liver lesions by texture parameters, Ultrasound Medicine Biol., 22, 1177-1181, 1996.
    • (1996) Ultrasound Medicine Biol. , vol.22 , pp. 1177-1181
    • Sujana, H.1    Swarnamani, S.2    Suresh, S.3
  • 49
    • 0029150343 scopus 로고
    • Lesion size quantification in spect using an artificial neural network classification approach
    • Tourassi, G.D., Tourassi, G.D., and Floyd, C.E., Jr., Lesion size quantification in spect using an artificial neural network classification approach, Comput. Biomed. Res., 28, 257-270, 1995.
    • (1995) Comput. Biomed. Res. , vol.28 , pp. 257-270
    • Tourassi, G.D.1    Tourassi, G.D.2    Floyd, C.E.3
  • 50
    • 0031803187 scopus 로고    scopus 로고
    • Automated segmentation of anatomic regions in chest radiographs using an adaptive-sized hybrid neural network
    • Tsujii, O., Freedman, M.T., and Mun, S.K., Automated segmentation of anatomic regions in chest radiographs using an adaptive-sized hybrid neural network, Medical Phys., 25, 998-1007, 1998.
    • (1998) Medical Phys. , vol.25 , pp. 998-1007
    • Tsujii, O.1    Freedman, M.T.2    Mun, S.K.3
  • 51
    • 0026851210 scopus 로고
    • A recurrent cooperative/competitive field for segmentation of magnetic resonance brain images
    • Worth, A.J., Lehar, S., and Kennedy, D.M., A recurrent cooperative/competitive field for segmentation of magnetic resonance brain images, IEEE Trans. Knowledge Data Eng., 4, 156-161, 1992.
    • (1992) IEEE Trans. Knowledge Data Eng. , vol.4 , pp. 156-161
    • Worth, A.J.1    Lehar, S.2    Kennedy, D.M.3
  • 52
  • 54
    • 0036846761 scopus 로고    scopus 로고
    • Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc
    • Bowd, C., Chan, K., Zangwill, L.M., Goldbaum, M.H., Lee, T.W., Sejnowski, T.J., and Weinreb, R.N., Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc, Invest. Ophthalmol. Vis. Sci., 43, 3444-3454, 2002.
    • (2002) Invest. Ophthalmol. Vis. Sci. , vol.43 , pp. 3444-3454
    • Bowd, C.1    Chan, K.2    Zangwill, L.M.3    Goldbaum, M.H.4    Lee, T.W.5    Sejnowski, T.J.6    Weinreb, R.N.7
  • 55
    • 0032936633 scopus 로고    scopus 로고
    • Improving cephalogram analysis through feature subimage extraction
    • Chen, Y.-T., Cheng, K.-S., and Liu, J.-K., Improving cephalogram analysis through feature subimage extraction, Eng. Medicine Biol. Mag., IEEE, 18, 25-31, 1999.
    • (1999) Eng. Medicine Biol. Mag., IEEE , vol.18 , pp. 25-31
    • Chen, Y.-T.1    Cheng, K.-S.2    Liu, J.-K.3
  • 59
    • 80052105625 scopus 로고    scopus 로고
    • Morphological classification of sperm heads using artificial neural networks
    • Yi, W.J., Park, K.S., and Paick, J.S., Morphological classification of sperm heads using artificial neural networks, Medinfo, 9, 1071-1074, 1998.
    • (1998) Medinfo , vol.9 , pp. 1071-1074
    • Yi, W.J.1    Park, K.S.2    Paick, J.S.3
  • 60
    • 0036575880 scopus 로고    scopus 로고
    • Self-organising networks in modelling experimental data in software engineering
    • Oh, S.-K., Pedrycz, W., and Park, H.-S., Self-organising networks in modelling experimental data in software engineering, Comput. Digital Tech., IEEE Proc., 149, 61-78, 2002.
    • (2002) Comput. Digital Tech., IEEE Proc. , vol.149 , pp. 61-78
    • Oh, S.-K.1    Pedrycz, W.2    Park, H.-S.3
  • 61
    • 0030170250 scopus 로고    scopus 로고
    • Analysis of mammographic microcalcifications using gray-level image structure features
    • Dhawan, A.P., Chitre, Y., and Kaiser-Bonasso, C., Analysis of mammographic microcalcifications using gray-level image structure features, IEEE Trans. Medical Imaging, 15, 246-259, 1996.
    • (1996) IEEE Trans. Medical Imaging , vol.15 , pp. 246-259
    • Dhawan, A.P.1    Chitre, Y.2    Kaiser-Bonasso, C.3
  • 62
    • 0032965064 scopus 로고    scopus 로고
    • A self-organizing neural system for learning to recognize textured scenes
    • Grossberg, S. and Williamson, J.R., A self-organizing neural system for learning to recognize textured scenes, Vision Res., 39, 1385-1406, 1999.
    • (1999) Vision Res. , vol.39 , pp. 1385-1406
    • Grossberg, S.1    Williamson, J.R.2
  • 63
    • 0029196521 scopus 로고
    • Back propagation network and its configuration for blood vessel detection in angiograms
    • Nekovei, R. and Sun, Y., Back propagation network and its configuration for blood vessel detection in angiograms, IEEE Trans. Neural Networks, 6, 64-72, 1995.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 64-72
    • Nekovei, R.1    Sun, Y.2
  • 64
  • 66
    • 0035027279 scopus 로고    scopus 로고
    • A radius of curvature-based approach to cervical spine vertebra image analysis
    • Stanley, R.J. and Long, R., A radius of curvature-based approach to cervical spine vertebra image analysis, Biomed. Sci. Instrum., 37, 385-390, 2001.
    • (2001) Biomed. Sci. Instrum. , vol.37 , pp. 385-390
    • Stanley, R.J.1    Long, R.2
  • 67
    • 0026925678 scopus 로고
    • A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain
    • Hall, L.O., Bensaid, A.M., Clarke, L.P., Velthuizen, R.P., Silbiger, M.S., and Bezdek, J.C., A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain, IEEE Trans. Neural Networks, 3, 672-682, 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 672-682
    • Hall, L.O.1    Bensaid, A.M.2    Clarke, L.P.3    Velthuizen, R.P.4    Silbiger, M.S.5    Bezdek, J.C.6
  • 68
    • 0036292373 scopus 로고    scopus 로고
    • Applications of neural network analyses to in vivo 1H magnetic resonance spectroscopy of Parkinson disease patients
    • Axelson, D., Bakken, I.J., Susann Gribbestad, I., Ehrnholm, B., Nilsen, G., and Aasly, J., Applications of neural network analyses to in vivo 1H magnetic resonance spectroscopy of Parkinson disease patients, J. Magn. Resonance Imaging, 16, 13-20, 2002.
    • (2002) J. Magn. Resonance Imaging , vol.16 , pp. 13-20
    • Axelson, D.1    Bakken, I.J.2    Susann Gribbestad, I.3    Ehrnholm, B.4    Nilsen, G.5    Aasly, J.6
  • 69
    • 0033233279 scopus 로고    scopus 로고
    • Model-free functional MRI analysis using Kohonen clustering neural network and fuzzy c-means
    • Chuang, K.-H., Chiu, M.-J., Lin, C.-C., and Chen, J.-H., Model-free functional MRI analysis using Kohonen clustering neural network and fuzzy c-means, IEEE Trans. Medical Imaging, 18, 1117-1128, 1999.
    • (1999) IEEE Trans. Medical Imaging , vol.18 , pp. 1117-1128
    • Chuang, K.-H.1    Chiu, M.-J.2    Lin, C.-C.3    Chen, J.-H.4
  • 70
    • 0029310008 scopus 로고
    • Approximate reconstruction of PET data with a selforganizing neural network
    • Comtat, C. and Morel, C., Approximate reconstruction of PET data with a selforganizing neural network, IEEE Trans. Neural Networks, 6, 783-789, 1995.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 783-789
    • Comtat, C.1    Morel, C.2
  • 71
    • 0029515933 scopus 로고
    • Assessment of regions at risk from coronary X-ray imaging by Kohonen’s map
    • Coppini, G., Tamburini, E., L’Abbate, A., and Valli, G., Assessment of regions at risk from coronary X-ray imaging by Kohonen’s map, Comput. Cardiol., 1995, 757-760, 1995.
    • (1995) Comput. Cardiol. , vol.1995 , pp. 757-760
    • Coppini, G.1    Tamburini, E.2    L’Abbate, A.3    Valli, G.4
  • 72
  • 73
    • 0028392680 scopus 로고
    • Automatic initial estimation of the left ventricular myocardial midwall in emission tomograms using Kohonen maps
    • Manhaeghe, C., Lemahieu, I., Vogelaers, D., and Colardyn, F., Automatic initial estimation of the left ventricular myocardial midwall in emission tomograms using Kohonen maps, IEEE Trans. Pattern Anal. Machine Intelligence, 16, 259-266, 1994.
    • (1994) IEEE Trans. Pattern Anal. Machine Intelligence , vol.16 , pp. 259-266
    • Manhaeghe, C.1    Lemahieu, I.2    Vogelaers, D.3    Colardyn, F.4
  • 74
    • 0343527526 scopus 로고    scopus 로고
    • Mapping and fuzzy classification of macromolecular images using self-organizing neural networks
    • Pascual, A., Barcena, M., Merelo, J.J., and Carazo, J.M., Mapping and fuzzy classification of macromolecular images using self-organizing neural networks, Ultramicroscopy, 84, 85-99, 2000.
    • (2000) Ultramicroscopy , vol.84 , pp. 85-99
    • Pascual, A.1    Barcena, M.2    Merelo, J.J.3    Carazo, J.M.4
  • 75
    • 0031283432 scopus 로고    scopus 로고
    • Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks
    • Reddick, W.E., Glass, J.O., Cook, E.N., Elkin, T.D., and Deaton, R.J., Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks, IEEE Trans. Medical Imaging, 16, 911-918, 1997.
    • (1997) IEEE Trans. Medical Imaging , vol.16 , pp. 911-918
    • Reddick, W.E.1    Glass, J.O.2    Cook, E.N.3    Elkin, T.D.4    Deaton, R.J.5
  • 76
    • 0030215237 scopus 로고    scopus 로고
    • The application of competitive Hopfield neural network to medical-image segmentation
    • Cheng, K.-S., Lin, J.-S., and Mao, C.-W., The application of competitive Hopfield neural network to medical-image segmentation, IEEE Trans. Medical Imaging, 15, 560-567, 1996.
    • (1996) IEEE Trans. Medical Imaging , vol.15 , pp. 560-567
    • Cheng, K.-S.1    Lin, J.-S.2    Mao, C.-W.3
  • 77
    • 0028493565 scopus 로고
    • Prereconstruction restoration of SPECT projection images by a neural network
    • Gopal, S.S. and Hebert, T.J., Prereconstruction restoration of SPECT projection images by a neural network, IEEE Trans. Nuclear Sci., 41, 1620-1625, 1994.
    • (1994) IEEE Trans. Nuclear Sci. , vol.41 , pp. 1620-1625
    • Gopal, S.S.1    Hebert, T.J.2
  • 78
    • 0033153748 scopus 로고    scopus 로고
    • Abdominal organ segmentation using texture transforms and a Hopfield neural network
    • Koss, J.E., Newman, F.D., Johnson, T.K., and Kirch, D.L., Abdominal organ segmentation using texture transforms and a Hopfield neural network, IEEE Trans. Medical Imaging, 18, 640-648, 1999.
    • (1999) IEEE Trans. Medical Imaging , vol.18 , pp. 640-648
    • Koss, J.E.1    Newman, F.D.2    Johnson, T.K.3    Kirch, D.L.4
  • 79
    • 0030219668 scopus 로고    scopus 로고
    • Multispectral magnetic resonance images segmentation using fuzzy Hopfield neural network
    • Lin, J.S., Cheng, K.S., and Mao, C.W., Multispectral magnetic resonance images segmentation using fuzzy Hopfield neural network, Int. J. Biomed. Comput., 42, 205-214, 1996.
    • (1996) Int. J. Biomed. Comput. , vol.42 , pp. 205-214
    • Lin, J.S.1    Cheng, K.S.2    Mao, C.W.3
  • 80
    • 0030213049 scopus 로고    scopus 로고
    • A fuzzy Hopfield neural network for medical image segmentation
    • Lin, J.-S., Cheng, K.-S., and Mao, C.-W., A fuzzy Hopfield neural network for medical image segmentation, IEEE Trans. Nucl. Sci., 43, 2389-2398, 1996.
    • (1996) IEEE Trans. Nucl. Sci. , vol.43 , pp. 2389-2398
    • Lin, J.-S.1    Cheng, K.-S.2    Mao, C.-W.3
  • 81
    • 0030374184 scopus 로고    scopus 로고
    • A comparison of Hopfield neural network and Boltzmann machine in segmenting MR images of the brain
    • Sammouda, R., Niki, N., and Nishitani, H., A comparison of Hopfield neural network and Boltzmann machine in segmenting MR images of the brain, IEEE Trans. Nucl. Sci., 43, 3361-3369, 1996.
    • (1996) IEEE Trans. Nucl. Sci. , vol.43 , pp. 3361-3369
    • Sammouda, R.1    Niki, N.2    Nishitani, H.3
  • 82
    • 0027698690 scopus 로고
    • Minimising the energy of active contour model using a Hopfield network
    • Tsai, C.-T., Sun, Y.-N., and Chung, P.-C., Minimising the energy of active contour model using a Hopfield network, Comput. Digital Tech., IEEE Proc., 140, 297-303, 1993.
    • (1993) Comput. Digital Tech., IEEE Proc. , vol.140 , pp. 297-303
    • Tsai, C.-T.1    Sun, Y.-N.2    Chung, P.-C.3
  • 83
    • 0031210487 scopus 로고    scopus 로고
    • Multiobjective neural network for image reconstruction
    • Wang, Y. and Wahl, F.M., Multiobjective neural network for image reconstruction, Vision, Image Signal Process., IEEE Proc., 144, 233-236, 1997.
    • (1997) Vision, Image Signal Process., IEEE Proc. , vol.144 , pp. 233-236
    • Wang, Y.1    Wahl, F.M.2
  • 84
    • 0031060807 scopus 로고    scopus 로고
    • Computerized tumor boundary detection using a Hopfield neural network
    • Zhu, Y. and Yan, Z., Computerized tumor boundary detection using a Hopfield neural network, IEEE Trans. Medical Imaging, 16, 55-67, 1997.
    • (1997) IEEE Trans. Medical Imaging , vol.16 , pp. 55-67
    • Zhu, Y.1    Yan, Z.2
  • 89
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • Geman, S. and Geman, D., Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Machine Intelligence, 6, 721-741, 1986.
    • (1986) IEEE Trans. Pattern Anal. Machine Intelligence , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 91
    • 0035354253 scopus 로고    scopus 로고
    • Magnetic resonance image analysis by information theoretic criteria and stochastic site models
    • Wang, Y., Adali, T., Xuan, J., and Szabo, Z., Magnetic resonance image analysis by information theoretic criteria and stochastic site models, IEEE Trans. Inf. Technol. Biomedicine, 5, 150-158, 2001.
    • (2001) IEEE Trans. Inf. Technol. Biomedicine , vol.5 , pp. 150-158
    • Wang, Y.1    Adali, T.2    Xuan, J.3    Szabo, Z.4
  • 92
    • 0030189287 scopus 로고    scopus 로고
    • Markov models of specular and diffuse scattering in restoration of medical ultrasound images
    • Hokland, J.H. and Kelly, P.A., Markov models of specular and diffuse scattering in restoration of medical ultrasound images, IEEE Trans. Ultrasonics, Ferroelectrics Frequency Control, 43, 660-669, 1996.
    • (1996) IEEE Trans. Ultrasonics, Ferroelectrics Frequency Control , vol.43 , pp. 660-669
    • Hokland, J.H.1    Kelly, P.A.2
  • 93
    • 0030126711 scopus 로고    scopus 로고
    • Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI
    • Johnston, B., Atkins, M.S., Mackiewich, B., and Anderson, M., Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI, IEEE Trans. Medical Imaging, 15, 154-169, 1996.
    • (1996) IEEE Trans. Medical Imaging , vol.15 , pp. 154-169
    • Johnston, B.1    Atkins, M.S.2    Mackiewich, B.3    Anderson, M.4
  • 98
    • 0037306384 scopus 로고    scopus 로고
    • Support-vector machines for diagnosis of breast tumors on US images
    • Chang, R.F., Wu, W.J., Moon, W.K., Chou, Y.H., and Chen, D.R., Support-vector machines for diagnosis of breast tumors on US images, Acad. Radiol., 10, 189-197, 2003.
    • (2003) Acad. Radiol. , vol.10 , pp. 189-197
    • Chang, R.F.1    Wu, W.J.2    Moon, W.K.3    Chou, Y.H.4    Chen, D.R.5
  • 103
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf, B., Smola, A., and Müller, K.-R., Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation, 10, 1299-1319, 1998.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 104
    • 0038321577 scopus 로고    scopus 로고
    • Hierarchical active shape models, using the wavelet transform
    • Davatzikos, C., Tao, X., and Shen, D., Hierarchical active shape models, using the wavelet transform, IEEE Trans. Medical Imaging, 22, 414-423, 2003.
    • (2003) IEEE Trans. Medical Imaging , vol.22 , pp. 414-423
    • Davatzikos, C.1    Tao, X.2    Shen, D.3
  • 106
    • 0036525887 scopus 로고    scopus 로고
    • Classification of disease subgroup and correlation with disease severity using magnetic resonance imaging whole-brain histograms: Application to magnetization transfer ratios and multiple sclerosis
    • Dehmeshki, J., Barker, G.J., and Tofts, P.S., Classification of disease subgroup and correlation with disease severity using magnetic resonance imaging whole-brain histograms: application to magnetization transfer ratios and multiple sclerosis, IEEE Trans. Medical Imaging, 21, 320-331, 2002.
    • (2002) IEEE Trans. Medical Imaging , vol.21 , pp. 320-331
    • Dehmeshki, J.1    Barker, G.J.2    Tofts, P.S.3
  • 107
    • 0035355153 scopus 로고    scopus 로고
    • Visualization of intracranial arteriovenous malformation with physiological information
    • Nyui, Y., Ogawa, K., and Kunieda, E., Visualization of intracranial arteriovenous malformation with physiological information, IEEE Trans. Nucl. Sci., 48, 855-858, 2001.
    • (2001) IEEE Trans. Nucl. Sci. , vol.48 , pp. 855-858
    • Nyui, Y.1    Ogawa, K.2    Kunieda, E.3
  • 108
    • 0026923824 scopus 로고
    • A comparative analysis of several transformations for enhancement and segmentation of magnetic resonance image scene sequences
    • Soltanian-Zadeh, H., Windham, J.P., Peck, D.J., and Yagle, A.E., A comparative analysis of several transformations for enhancement and segmentation of magnetic resonance image scene sequences, IEEE Trans. Medical Imaging, 11, 302-318, 1992.
    • (1992) IEEE Trans. Medical Imaging , vol.11 , pp. 302-318
    • Soltanian-Zadeh, H.1    Windham, J.P.2    Peck, D.J.3    Yagle, A.E.4
  • 112
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • Bell, J. and Sejnowski, T.J., An information-maximization approach to blind separation and blind deconvolution, Neural Computation, 7, 1129-1159, 1995.
    • (1995) Neural Computation , vol.7 , pp. 1129-1159
    • Bell, J.1    Sejnowski, T.J.2
  • 114
    • 1342324773 scopus 로고    scopus 로고
    • Probabilistic independent component analysis for functional magnetic resonance imaging
    • Beckmann, C.F. and Smith, S.M., Probabilistic independent component analysis for functional magnetic resonance imaging, IEEE Trans. Medical Imaging, 23, 137-152, 2004.
    • (2004) IEEE Trans. Medical Imaging , vol.23 , pp. 137-152
    • Beckmann, C.F.1    Smith, S.M.2
  • 116
    • 12244298864 scopus 로고    scopus 로고
    • A decomposition model to track gene expression signatures: Preview on observer-independent classification of ovarian cancer
    • Martoglio, A.M., Miskin, J.W., Smith, S.K., and MacKay, D.J., A decomposition model to track gene expression signatures: preview on observer-independent classification of ovarian cancer, Bioinformatics, 18, 1617-1624, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 1617-1624
    • Martoglio, A.M.1    Miskin, J.W.2    Smith, S.K.3    MacKay, D.J.4
  • 118
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L., Bagging predictors, Machine Learning, 26, 123-140, 1996.
    • (1996) Machine Learning , vol.26 , pp. 123-140
    • Breiman, L.1
  • 122
    • 0036017337 scopus 로고    scopus 로고
    • Skin lesion classification using oblique-incidence diffuse reflectance spectroscopic imaging
    • Mehrubeoglu, M., Kehtarnavaz, N., Marquez, G., Duvic, M., and Wang, L. V., Skin lesion classification using oblique-incidence diffuse reflectance spectroscopic imaging, Appl. Opt., 41, 182-192, 2002.
    • (2002) Appl. Opt. , vol.41 , pp. 182-192
    • Mehrubeoglu, M.1    Kehtarnavaz, N.2    Marquez, G.3    Duvic, M.4    Wang, L.V.5
  • 124
    • 0037211316 scopus 로고    scopus 로고
    • Bagging tree classifiers for laser scanning images: A dataand simulation-based strategy
    • Hothorn, T. and Lausen, B., Bagging tree classifiers for laser scanning images: a dataand simulation-based strategy, Artif. Intelligence Medicine, 27, 65-79, 2003.
    • (2003) Artif. Intelligence Medicine , vol.27 , pp. 65-79
    • Hothorn, T.1    Lausen, B.2
  • 125
    • 0035324510 scopus 로고    scopus 로고
    • Penalized discriminant analysis of 15O-water PET brain images with prediction error selection of smoothness and regularization hyperparameters
    • Kustra, R. and Strother, S., Penalized discriminant analysis of 15O-water PET brain images with prediction error selection of smoothness and regularization hyperparameters, IEEE Trans. Medical Imaging, 20, 376-387, 2001.
    • (2001) IEEE Trans. Medical Imaging , vol.20 , pp. 376-387
    • Kustra, R.1    Strother, S.2
  • 128
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • Arulampalam, M.S., Maskell, S., Gordon, N., and Clapp, T., A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process., 50, 174-188, 2002.
    • (2002) IEEE Trans. Signal Process. , vol.50 , pp. 174-188
    • Arulampalam, M.S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 130
    • 0032136153 scopus 로고    scopus 로고
    • Condensation: Conditional density propagation for visual tracking
    • Isard, M. and Blake, A., Condensation: conditional density propagation for visual tracking, Int. J. Comput. Vision, 29, 5-28, 1998.
    • (1998) Int. J. Comput. Vision , vol.29 , pp. 5-28
    • Isard, M.1    Blake, A.2
  • 131
    • 84957655116 scopus 로고    scopus 로고
    • Condensation: Unifying low-level and high-level tracking in a stochastic framework
    • Isard, M. and Blake, A., Condensation: unifying low-level and high-level tracking in a stochastic framework, in Proc. European Conference on Computer Vision, Vol. 1, 1998, pp. 893-908.
    • (1998) Proc. European Conference on Computer Vision , vol.1 , pp. 893-908
    • Isard, M.1    Blake, A.2
  • 132
    • 84889563609 scopus 로고    scopus 로고
    • Technical Report, Visual Dynamics Research Group, University of Oxford, London
    • Isard, M. and MacCormick, J., Hand Tracking for Vision-Based Drawing, Technical Report, Visual Dynamics Research Group, University of Oxford, London, 2000.
    • (2000) Hand Tracking for Vision-Based Drawing
    • Isard, M.1    MacCormick, J.2
  • 134
    • 0034851441 scopus 로고    scopus 로고
    • Bramble: A Bayesian multiple blob tracker
    • IEEE Computer Society, Los Alamos, CA
    • Isard, M. and MacCormick, J., Bramble: a Bayesian multiple blob tracker, in IEEE Int. Conf. Comput. Vision, Vol. 2, IEEE Computer Society, Los Alamos, CA, 2001, pp. 34-41.
    • (2001) IEEE Int. Conf. Comput. Vision , vol.2 , pp. 34-41
    • Isard, M.1    MacCormick, J.2
  • 136
    • 11844268835 scopus 로고    scopus 로고
    • Tracking many objects using subordinated condensation
    • Tweed, D. and Calway, A., Tracking many objects using subordinated condensation, in Br. Machine Vision Conf. Proc., 2002, pp. 283-292.
    • (2002) Br. Machine Vision Conf. Proc. , pp. 283-292
    • Tweed, D.1    Calway, A.2
  • 139
    • 0000228665 scopus 로고    scopus 로고
    • The cross-entropy method for combinatorial and continuous optimisation, methodology and computing
    • Rubinstein, R.Y., The cross-entropy method for combinatorial and continuous optimisation, methodology and computing, Appl. Probab., 1, 127-190, 1999.
    • (1999) Appl. Probab. , vol.1 , pp. 127-190
    • Rubinstein, R.Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.