메뉴 건너뛰기




Volumn 22, Issue 9, 1996, Pages 1177-1181

Application of artificial neural networks for the classification of liver lesions by image texture parameters

Author keywords

Hemangioma; Malignancy; Neural network classification; Texture parameters; Ultrasonic scan

Indexed keywords

BACKPROPAGATION; IMAGE ANALYSIS; IMAGE QUALITY; MEDICAL IMAGING; NEURAL NETWORKS; TISSUE;

EID: 0030443396     PISSN: 03015629     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0301-5629(96)00144-5     Document Type: Article
Times cited : (109)

References (19)
  • 2
    • 0025585326 scopus 로고
    • Use of gray level value distribution of run lengths for texture analysis
    • Chu A, Sehgal CM, Greenleaf JF. Use of gray level value distribution of run lengths for texture analysis. Patt Recog Lett 1990;12:415-420.
    • (1990) Patt Recog Lett , vol.12 , pp. 415-420
    • Chu, A.1    Sehgal, C.M.2    Greenleaf, J.F.3
  • 3
    • 0027851280 scopus 로고
    • Improving the distinction between benign and malignant breast lesions: The value of sonographic texture analysis
    • Garra BS, Krasner BH, Horii SC, Ascher S, Mun SK, Zeman RK. Improving the distinction between benign and malignant breast lesions: the value of sonographic texture analysis. Ultrason Imag 1993;15:267-285.
    • (1993) Ultrason Imag , vol.15 , pp. 267-285
    • Garra, B.S.1    Krasner, B.H.2    Horii, S.C.3    Ascher, S.4    Mun, S.K.5    Zeman, R.K.6
  • 4
    • 0027746064 scopus 로고
    • Application of neural networks for the classification of diffuse liver disease by quantitative echography
    • Gebbinck MS, Verhoven JTM, Thijssen JM, Schouten TE. Application of neural networks for the classification of diffuse liver disease by quantitative echography. Ultrason Imag 1993;15:168-169.
    • (1993) Ultrason Imag , vol.15 , pp. 168-169
    • Gebbinck, M.S.1    Verhoven, J.T.M.2    Thijssen, J.M.3    Schouten, T.E.4
  • 5
    • 0026483164 scopus 로고
    • Improvement in specificity of ultrasonography for diagnosis of breast tumors by means of artificial intelligence
    • Goldberg V, Manduca A, Ewert DL, Gisvold JJ, Greenleaf JF. Improvement in specificity of ultrasonography for diagnosis of breast tumors by means of artificial intelligence. Med Phys 1992;19:1475-1481.
    • (1992) Med Phys , vol.19 , pp. 1475-1481
    • Goldberg, V.1    Manduca, A.2    Ewert, D.L.3    Gisvold, J.J.4    Greenleaf, J.F.5
  • 6
    • 0025045379 scopus 로고
    • Echographic tissue characterization in diffuse parenchymal liver disease: Correlation of image structure with histology
    • Haberkorn U, Zuna I, Lorenz A, Zerban H, Layer G. Echographic tissue characterization in diffuse parenchymal liver disease: correlation of image structure with histology. Ultrasonic Imaging 1990;12:155-170.
    • (1990) Ultrasonic Imaging , vol.12 , pp. 155-170
    • Haberkorn, U.1    Zuna, I.2    Lorenz, A.3    Zerban, H.4    Layer, G.5
  • 9
    • 0030047836 scopus 로고    scopus 로고
    • Sonographic diagnosis of fatty liver using a histogram technique that compares liver and renal cortical echo amplitude
    • Hiroyuki O, Yasuaki M. Sonographic diagnosis of fatty liver using a histogram technique that compares liver and renal cortical echo amplitude. J Clin Ultrasound 1996;24:25-29.
    • (1996) J Clin Ultrasound , vol.24 , pp. 25-29
    • Hiroyuki, O.1    Yasuaki, M.2
  • 11
    • 0025121189 scopus 로고
    • Computerized ultrasound B-scan texture analysis of experimental fatty liver disease: Influence of total lipid content and fat deposit distribution
    • Layer G, Zuna I, Lorenz A, Zerban H, Haberkorn U. Computerized ultrasound B-scan texture analysis of experimental fatty liver disease: influence of total lipid content and fat deposit distribution. Ultrason Imag 1990;12:171-188.
    • (1990) Ultrason Imag , vol.12 , pp. 171-188
    • Layer, G.1    Zuna, I.2    Lorenz, A.3    Zerban, H.4    Haberkorn, U.5
  • 12
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Lippmann R. An introduction to computing with neural nets. IEEE ASSP Mag 1987;4:4-22.
    • (1987) IEEE ASSP Mag , vol.4 , pp. 4-22
    • Lippmann, R.1
  • 13
    • 0025942666 scopus 로고
    • Application of neural nets to ultrasound tissue characterization
    • Ostrem JS, Valdes AD, Edmonds PD. Application of neural nets to ultrasound tissue characterization. Ultrason Imag 1991;13:298-299.
    • (1991) Ultrason Imag , vol.13 , pp. 298-299
    • Ostrem, J.S.1    Valdes, A.D.2    Edmonds, P.D.3
  • 14
    • 0029329264 scopus 로고
    • Catheter-manometer system damped blood pressures detected by neural nets
    • Prentza A, Wesseling KH. Catheter-manometer system damped blood pressures detected by neural nets. Med Biol Eng Comput 1995;33:589-595.
    • (1995) Med Biol Eng Comput , vol.33 , pp. 589-595
    • Prentza, A.1    Wesseling, K.H.2
  • 15
    • 0027689372 scopus 로고
    • Neural network approach for computer-assisted interpretation of ultrasound images of the gallbladder
    • Rinast E, Linder R, Weiss HD. Neural network approach for computer-assisted interpretation of ultrasound images of the gallbladder. Eur J Radiol 1993;17: 175-178.
    • (1993) Eur J Radiol , vol.17 , pp. 175-178
    • Rinast, E.1    Linder, R.2    Weiss, H.D.3
  • 17
    • 0016939601 scopus 로고
    • A comparative study of texture measures for terrain classification
    • SMC-
    • Weszka JS, Dyer CR, Rosenfeld A. A comparative study of texture measures for terrain classification. IEEE Trans Syst Man Cybernet 1976;SMC-6:269-285.
    • (1976) IEEE Trans Syst Man Cybernet , vol.6 , pp. 269-285
    • Weszka, J.S.1    Dyer, C.R.2    Rosenfeld, A.3
  • 18
    • 0018332308 scopus 로고
    • Scintigraphy and ultrasonography of hepatic hemangioma
    • Wiener SN, Parulekar SG. Scintigraphy and ultrasonography of hepatic hemangioma. Radiology 1979;132:149-153.
    • (1979) Radiology , vol.132 , pp. 149-153
    • Wiener, S.N.1    Parulekar, S.G.2
  • 19
    • 0028307613 scopus 로고
    • In vivo liver differentiation by ultrasound using an artificial neural network
    • Zatari D, Botros N, Dunn F. In vivo liver differentiation by ultrasound using an artificial neural network. J Acoust Soc Am 1993;96:376-381.
    • (1993) J Acoust Soc Am , vol.96 , pp. 376-381
    • Zatari, D.1    Botros, N.2    Dunn, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.