메뉴 건너뛰기




Volumn 18, Issue 7, 1999, Pages 640-648

Abdominal organ segmentation using texture transforms and a hopfield neural network

Author keywords

Hopfield neural network; Organ segmentation; Texture analysis

Indexed keywords

COMPUTERIZED TOMOGRAPHY; IMAGE ANALYSIS; IMAGE SEGMENTATION; LYAPUNOV METHODS; MAGNETIC RESONANCE IMAGING; MATHEMATICAL TRANSFORMATIONS; NEURAL NETWORKS; OPTIMIZATION; PROBLEM SOLVING; STATISTICAL METHODS; TISSUE;

EID: 0033153748     PISSN: 02780062     EISSN: None     Source Type: Journal    
DOI: 10.1109/42.790463     Document Type: Article
Times cited : (90)

References (32)
  • 3
    • 0039873392 scopus 로고    scopus 로고
    • Using deformable surfaces and to segment 3-d images and infer differential structures
    • vol. 56, no. 2, pp. 242-263, 1992.
    • I. Cohen, L. D. Cohen, and N. J. AyacheUsing deformable surfaces and to segment 3-d images and infer differential structuresCVGIP: Image Understanding, vol. 56, no. 2, pp. 242-263, 1992.
    • CVGIP: Image Understanding
    • Cohen, I.1    Cohen, L.D.2    Ayache, N.J.3
  • 5
    • 0027275316 scopus 로고    scopus 로고
    • Review of MR image segmentation techniques using pattern recognition
    • vol. 20, no. 4, 1993.
    • J. C. Bezdek, L. O. Hall, and L. P. ClariceReview of MR image segmentation techniques using pattern recognitionMed. Phys., vol. 20, no. 4, 1993.
    • Med. Phys.
    • Bezdek, J.C.1    Hall, L.O.2    Clarice, L.P.3
  • 6
    • 0030215237 scopus 로고    scopus 로고
    • The application of competitive Hopfield neural network to medical image segmentation
    • vol. 15, pp. 560-567, Aug. 1996.
    • K. S. Cheng, J. S. Lin, and C. W. MaoThe application of competitive Hopfield neural network to medical image segmentationIEEE Trans. Med. Imag., vol. 15, pp. 560-567, Aug. 1996.
    • IEEE Trans. Med. Imag.
    • Cheng, K.S.1    Lin S, J.2    Mao, C.W.3
  • 8
    • 0022561870 scopus 로고    scopus 로고
    • Sum and difference histograms for texture classification
    • vol. PAMI-8, pp. 118-125, Jan. 1986.
    • M. UnserSum and difference histograms for texture classificationIEEE Trans. Pattern Anal. Machine Intell, vol. PAMI-8, pp. 118-125, Jan. 1986.
    • IEEE Trans. Pattern Anal. Machine Intell
    • Unser, M.1
  • 9
    • 0026900840 scopus 로고    scopus 로고
    • Performance evaluation for four classes of textural features
    • vol. 25, no. 8, pp. 819-833, 1992.
    • P. P. Ohanian and R. C. DubesPerformance evaluation for four classes of textural featuresPattern Recognit., vol. 25, no. 8, pp. 819-833, 1992.
    • Pattern Recognit.
    • Ohanian, P.P.1    Dubes, R.C.2
  • 13
    • 0028004664 scopus 로고    scopus 로고
    • Automated interpretation of planar thallium-201dipyridamole stress-redistribution scintigrams using artificial neural networks
    • vol. 35, pp. 2041-2047, 1994.
    • G. Porenta, G. Dorffner, S. Kundrat, P. Petta, J. Duit-Schedlmayer, and H. SochorAutomated interpretation of planar thallium-201dipyridamole stress-redistribution scintigrams using artificial neural networksJ. Nucl. Med., vol. 35, pp. 2041-2047, 1994.
    • J. Nucl. Med.
    • Porenta, G.1    Dorffner, G.2    Kundrat, S.3    Petta, P.4    Duit-Schedlmayer, J.5    Sochor, H.6
  • 14
    • 85034938923 scopus 로고    scopus 로고
    • An artificial neural network approach for the diagnosis of acute pulmonary embolism
    • vol. 189, pp., 1993.
    • G. D. Tourassi, C. E. Floyd, H. D. Sostman, and R. E. ColmanAn artificial neural network approach for the diagnosis of acute pulmonary embolismRadiology, vol. 189, pp., 1993.
    • Radiology
    • Tourassi, G.D.1    Floyd, C.E.2    Sostman, H.D.3    Colman, R.E.4
  • 15
    • 0027662763 scopus 로고    scopus 로고
    • Neural-network-based segmentation of multi-modal medical images: A comparative and prospective study
    • vol. 12, no. 3, pp. 534-544, 1993.
    • M. Ozkan, B. M. Dawant, R. J. MaciunasNeural-network-based segmentation of multi-modal medical images: A comparative and prospective studyIEEE Trans. Med. Imag., vol. 12, no. 3, pp. 534-544, 1993.
    • IEEE Trans. Med. Imag.
    • Ozkan, M.1    Dawant, B.M.2    Maciunas, R.J.3
  • 16
    • 0026870427 scopus 로고    scopus 로고
    • Optimization neural networks for the segmentation of magnetic resonance images
    • vol. 11, pp. 215-220, June 1992.
    • S. C. Amartur, D. Piraino, and Y. TakefujiOptimization neural networks for the segmentation of magnetic resonance imagesIEEE Trans. Med. Imag., vol. 11, pp. 215-220, June 1992.
    • IEEE Trans. Med. Imag.
    • Amartur, S.C.1    Piraino, D.2    Takefuji, Y.3
  • 17
    • 0026925678 scopus 로고    scopus 로고
    • A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain
    • vol. 3, no. 5, pp. 672-682, 1992.
    • L. O. Hall, A. M. Bensaid, L. P. Clarke, R. P. Velthuizen, M. S. Silbiger, and J. C. BezdekA comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brainIEEE Trans. Neural Networks, vol. 3, no. 5, pp. 672-682, 1992.
    • IEEE Trans. Neural Networks
    • Hall, L.O.1    Bensaid, A.M.2    Clarke, L.P.3    Velthuizen, R.P.4    Silbiger, M.S.5    Bezdek, J.C.6
  • 18
    • 0027644794 scopus 로고    scopus 로고
    • Accurate scatter compensation using neural networks in radionuclide imaging
    • vol. 40, no. 4, pp. 1020-1025, 1993.
    • K. Ogawa and N. NishizakiAccurate scatter compensation using neural networks in radionuclide imagingIEEE Trans. Nucl. Sci., vol. 40, no. 4, pp. 1020-1025, 1993.
    • IEEE Trans. Nucl. Sci.
    • Ogawa, K.1    Nishizaki, N.2
  • 19
    • 0027569257 scopus 로고    scopus 로고
    • Data truncation artifact reduction in MR imaging using a multilayer neural network
    • vol. 12, pp. 73-77, Jan. 1993.
    • H. Yan and J. MaoData truncation artifact reduction in MR imaging using a multilayer neural networkIEEE Trans. Med. Imag., vol. 12, pp. 73-77, Jan. 1993.
    • IEEE Trans. Med. Imag.
    • Yan, H.1    Mao, J.2
  • 20
    • 0028493565 scopus 로고    scopus 로고
    • Pré-reconstruction restoration of SPECT projection images by a neural network
    • vol. 41, no. 4, pp. 1620-1625, 1994.
    • S. S. Gopal and T. J. HebertPré-reconstruction restoration of SPECT projection images by a neural networkIEEE Trans. Nucl. Sci., vol. 41, no. 4, pp. 1620-1625, 1994.
    • IEEE Trans. Nucl. Sci.
    • Gopal, S.S.1    Hebert, T.J.2
  • 21
    • 0027569232 scopus 로고    scopus 로고
    • Order statistic-neural network hybrid filters for gamma camera-bremsstrahlung image restoration
    • vol. 12, pp. 58-64, Jan. 1993.
    • W. Qian, M. Kallergi, and L.P. ClarkeOrder statistic-neural network hybrid filters for gamma camera-bremsstrahlung image restorationIEEE Trans. Med. Imag., vol. 12, pp. 58-64, Jan. 1993.
    • IEEE Trans. Med. Imag.
    • Qian, W.1    Kallergi, M.2    Clarke, L.P.3
  • 22
    • 0026517506 scopus 로고    scopus 로고
    • Automated lesion detection and lesion quantitation in MR images using autoassociative memory
    • vol. 19, no. 1, pp. 71-77, 1992.
    • U. Raff and F. D. NewmanAutomated lesion detection and lesion quantitation in MR images using autoassociative memoryMed. Phys., vol. 19, no. 1, pp. 71-77, 1992.
    • Med. Phys.
    • Raff, U.1    Newman, F.D.2
  • 23
    • 0026768444 scopus 로고    scopus 로고
    • An Artificial neural network for lesion detection on single-photon emission computed tomographic images
    • vol. 27, no. 9, pp. 667-672, 1992.
    • C. E. Floyd and G. D. TourassiAn Artificial neural network for lesion detection on single-photon emission computed tomographic imagesInvestigative Radial., vol. 27, no. 9, pp. 667-672, 1992.
    • Investigative Radial.
    • Floyd, C.E.1    Tourassi, G.D.2
  • 25
    • 0020118274 scopus 로고    scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • vol. 79, pp. 2554-2558, 1982.
    • J. J. HopfieldNeural networks and physical systems with emergent collective computational abilitiesProc. Nat. Acad. Sci. USA, vol. 79, pp. 2554-2558, 1982.
    • Proc. Nat. Acad. Sci. USA
    • Hopfield, J.J.1
  • 26
    • 0004469897 scopus 로고    scopus 로고
    • Neurons with graded response have collective computational properties like those of two-state neurons
    • vol. 81, pp. 3088-3092, 1984.
    • Neurons with graded response have collective computational properties like those of two-state neuronsProc. Nat. Acad. Sci. USA, vol. 81, pp. 3088-3092, 1984.
    • Proc. Nat. Acad. Sci. USA
  • 27
    • 0021835689 scopus 로고    scopus 로고
    • Neural computation of decisions in optimization problems
    • vol. 52, pp. 141-152, 1985.
    • J. J. Hopfield and D. W. TankNeural computation of decisions in optimization problemsBiol. Cybern., vol. 52, pp. 141-152, 1985.
    • Biol. Cybern.
    • Hopfield, J.J.1    Tank, D.W.2
  • 32
    • 85034509965 scopus 로고    scopus 로고
    • A multiple architecture, connectionist approach to automated organ segmentation for radiotherapy planning
    • vol. 24, no. 8, p. 1347, 1997.
    • S. M. Humphries, J. E. Koss, L. S. Hibbard, and F. D. NewmanA multiple architecture, connectionist approach to automated organ segmentation for radiotherapy planningMed. Phys., vol. 24, no. 8, p. 1347, 1997.
    • Med. Phys.
    • Humphries, S.M.1    Koss, J.E.2    Hibbard, L.S.3    Newman, F.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.