메뉴 건너뛰기




Volumn , Issue , 2009, Pages 118-135

Knowledge discovery for sensor network comprehension

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84860382052     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.4018/978-1-60566-328-9.ch006     Document Type: Chapter
Times cited : (9)

References (52)
  • 6
    • 33646933601 scopus 로고    scopus 로고
    • Online clustering of parallel data streams
    • doi:10.1016/j.datak.2005.05.009
    • Beringer, J., & Hüllermeier, E. (2006). Online clustering of parallel data streams. Data & Knowledge Engineering, 58(2), 180-204. doi:10.1016/j.datak.2005.05.009
    • (2006) Data & Knowledge Engineering , vol.58 , Issue.2 , pp. 180-204
    • Beringer, J.1    Hüllermeier, E.2
  • 7
    • 0003777592 scopus 로고    scopus 로고
    • chapter 8. Approximation Algorithms for Geometric Problems, PWS Publishing Company
    • Bern, M., & Eppstein, D. (1996). Approximation Algorithms for NP-hard Problems, chapter 8. Approximation Algorithms for Geometric Problems (pp. 296-345). PWS Publishing Company.
    • (1996) Approximation Algorithms for NP-hard Problems , pp. 296-345
    • Bern, M.1    Eppstein, D.2
  • 10
    • 33749572698 scopus 로고    scopus 로고
    • Evolutionary clustering
    • In
    • Chakrabarti, D., Kumar, R., & Tomkins, A. (2006). Evolutionary clustering. In KDD (pp. 554-560).
    • (2006) KDD , pp. 554-560
    • Chakrabarti, D.1    Kumar, R.2    Tomkins, A.3
  • 16
    • 33947403146 scopus 로고    scopus 로고
    • Distributed data mining in peer-to-peer networks
    • doi:10.1109/MIC.2006.74
    • Datta, S., Bhaduri, K., Giannella, C., Wolff, R., & Kargupta, H. (2006). Distributed data mining in peer-to-peer networks. IEEE Internet Computing, 10(4), 18-26. doi:10.1109/MIC.2006.74
    • (2006) IEEE Internet Computing , vol.10 , Issue.4 , pp. 18-26
    • Datta, S.1    Bhaduri, K.2    Giannella, C.3    Wolff, R.4    Kargupta, H.5
  • 19
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • In E. Simoudis, J.Han, & U. Fayyad (Eds.), Portland, OR: AAAI Press
    • Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In E. Simoudis, J.Han, & U. Fayyad (Eds.), Second International Conference on Knowledge Discovery and Data Mining (pp. 226-231). Portland, OR: AAAI Press.
    • (1996) Second International Conference on Knowledge Discovery and Data Mining , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 20
    • 25444465382 scopus 로고    scopus 로고
    • Incremental rule learning and border examples selection from numerical data streams
    • Ferrer, F., Aguilar, J., & Riquelme, J. (2005). Incremental rule learning and border examples selection from numerical data streams. Journal of Universal Computer Science, 11(8), 1426-1439.
    • (2005) Journal of Universal Computer Science , vol.11 , Issue.8 , pp. 1426-1439
    • Ferrer, F.1    Aguilar, J.2    Riquelme, J.3
  • 26
    • 0021938963 scopus 로고
    • Clustering to minimize the maximum inter-cluster distance
    • doi:10.1016/03043975(85)90224-5
    • Gonzalez, T. F. (1985). Clustering to minimize the maximum inter-cluster distance. Theoretical Computer Science, 38, 293-306. doi:10.1016/03043975(85)90224-5
    • (1985) Theoretical Computer Science , vol.38 , pp. 293-306
    • Gonzalez, T.F.1
  • 30
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random variables
    • doi:10.2307/2282952
    • Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301), 13-30. doi:10.2307/2282952
    • (1963) Journal of the American Statistical Association , vol.58 , Issue.301 , pp. 13-30
    • Hoeffding, W.1
  • 33
    • 85132267044 scopus 로고    scopus 로고
    • Distributed clustering using collective principal component analysis
    • doi:10.1007/PL00011677
    • Kargupta, H., Huang, W., Sivakumar, K., & Johnson, E. L. (2001). Distributed clustering using collective principal component analysis. Knowledge and Information Systems, 3(4), 422-448. doi:10.1007/PL00011677
    • (2001) Knowledge and Information Systems , vol.3 , Issue.4 , pp. 422-448
    • Kargupta, H.1    Huang, W.2    Sivakumar, K.3    Johnson, E.L.4
  • 37
    • 14344255219 scopus 로고    scopus 로고
    • Statistical gridbased clustering over data streams
    • doi:10.1145/974121.974127
    • Park, N. H., & Lee, W. S. (2004). Statistical gridbased clustering over data streams. SIGMOD Record, 33(1), 32-37. doi:10.1145/974121.974127
    • (2004) SIGMOD Record , vol.33 , Issue.1 , pp. 32-37
    • Park, N.H.1    Lee, W.S.2
  • 41
    • 79551553553 scopus 로고    scopus 로고
    • Requirements for clustering streaming sensors
    • In A. R. Ganguly, J. Gama, O. A. Omitaomu, M. M. Gaber, & R. R. Vatsavai (Eds.), CRC Press
    • Rodrigues, P. P., Gama, J., & Lopes, L. (2009). Requirements for clustering streaming sensors. In A. R. Ganguly, J. Gama, O. A. Omitaomu, M. M. Gaber, & R. R. Vatsavai (Eds.), Knowledge Discovery from Sensor Data (pp. 33-51). CRC Press.
    • (2009) Knowledge Discovery from Sensor Data , pp. 33-51
    • Rodrigues, P.P.1    Gama, J.2    Lopes, L.3
  • 43
    • 24044491541 scopus 로고    scopus 로고
    • Using hierarchical clustering methods to classify motor activities of copd patients from wearable sensor data
    • Sherrill, D. M., Moy, M. L., Reilly, J. J., & Bonato, P. (2005). Using hierarchical clustering methods to classify motor activities of copd patients from wearable sensor data. Journal of Neuroengineering and Rehabilitation, 2(16).
    • (2005) Journal of Neuroengineering and Rehabilitation , vol.2 , Issue.16
    • Sherrill, D.M.1    Moy, M.L.2    Reilly, J.J.3    Bonato, P.4
  • 44
    • 33749564726 scopus 로고    scopus 로고
    • Monic: Modeling and monitoring cluster transitions
    • In
    • Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., & Schult, R. (2006). Monic: modeling and monitoring cluster transitions. In KDD (pp. 706-711).
    • (2006) KDD , pp. 706-711
    • Spiliopoulou, M.1    Ntoutsi, I.2    Theodoridis, Y.3    Schult, R.4
  • 47
    • 84994158589 scopus 로고    scopus 로고
    • STING: A statistical information grid approach to spatial data mining
    • In M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky, P. Loucopoulos, & M. A. Jeusfeld (Eds.), Athens, Greece. Morgan Kaufmann
    • Wang, W., Yang, J., & Muntz, R. R. (1997). STING: A statistical information grid approach to spatial data mining. In M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky, P. Loucopoulos, & M. A. Jeusfeld (Eds.), Proceedings of the Twenty-Third International Conference on Very Large Data Bases (pp. 186-195). Athens, Greece. Morgan Kaufmann.
    • (1997) Proceedings of the Twenty-Third International Conference on Very Large Data Bases , pp. 186-195
    • Wang, W.1    Yang, J.2    Muntz, R.R.3
  • 48
    • 34047198289 scopus 로고    scopus 로고
    • The clustered aggregation (CAG) technique leveraging spatial and temporal correlations in wireless sensor networks
    • Article 3
    • Yoon, S., & Shahabi, C. (2007). The clustered aggregation (CAG) technique leveraging spatial and temporal correlations in wireless sensor networks. ACM Transactions on Sensor Networks, 3(1). Article 3.
    • (2007) ACM Transactions on Sensor Networks , vol.3 , Issue.1
    • Yoon, S.1    Shahabi, C.2
  • 49
    • 10944266504 scopus 로고    scopus 로고
    • HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks
    • doi:10.1109/TMC.2004.41
    • Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366-379. doi:10.1109/TMC.2004.41
    • (2004) IEEE Transactions on Mobile Computing , vol.3 , Issue.4 , pp. 366-379
    • Younis, O.1    Fahmy, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.