메뉴 건너뛰기




Volumn 7, Issue 3, 2012, Pages 245-255

Evaluating and comparing performance of feature combinations of heart rate variability measures for cardiac rhythm classification

Author keywords

Boosted C4.5; Heart rate variability; Linear features; Nonlinear features; Random forest; Support vector machines

Indexed keywords

DECISION TREES; DISEASES; RANDOM FORESTS; SUPPORT VECTOR MACHINES; TIME DOMAIN ANALYSIS;

EID: 84860234891     PISSN: 17468094     EISSN: 17468108     Source Type: Journal    
DOI: 10.1016/j.bspc.2011.10.001     Document Type: Conference Paper
Times cited : (40)

References (53)
  • 2
    • 58149131694 scopus 로고    scopus 로고
    • Development of QRS detection algorithm designed for wearable cardiorespiratory system
    • M. Adnane, Z. Jiang, and S. Choi Development of QRS detection algorithm designed for wearable cardiorespiratory system Comp. Meth. Prog. Biomed. 93 2009 20 31
    • (2009) Comp. Meth. Prog. Biomed. , vol.93 , pp. 20-31
    • Adnane, M.1    Jiang, Z.2    Choi, S.3
  • 3
    • 0020468801 scopus 로고
    • The interaction between heart rate and respiration. Part II - Nonlinear analysis based on computer modeling
    • R. Kitney, D. Linkens, A. Selman, and A. McDonald The interaction between heart rate and respiration. Part II - Nonlinear analysis based on computer modeling Automedica 4 1982 141 153
    • (1982) Automedica , vol.4 , pp. 141-153
    • Kitney, R.1    Linkens, D.2    Selman, A.3    McDonald, A.4
  • 5
    • 0029859714 scopus 로고    scopus 로고
    • Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics
    • N. Iyengar, C.K. Peng, A.L. Goldberger, and L.A. Lipsitz Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics Am. J. Physiol. 271 1996 1078 1084
    • (1996) Am. J. Physiol. , vol.271 , pp. 1078-1084
    • Iyengar, N.1    Peng, C.K.2    Goldberger, A.L.3    Lipsitz, L.A.4
  • 6
    • 0029988782 scopus 로고    scopus 로고
    • Heart rate variability guidelines: Standards of measurement, physiological interpretation, and clinical use
    • Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology
    • Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology Heart rate variability guidelines: standards of measurement, physiological interpretation, and clinical use Eur. Heart J. 17 1996 354 381
    • (1996) Eur. Heart J. , vol.17 , pp. 354-381
  • 7
    • 1542375476 scopus 로고    scopus 로고
    • Automatic arrhythmia detection based on time and time-frequency analysis of heart rate variability
    • DOI 10.1016/S0169-2607(03)00079-8, PII S0169260703000798
    • M.G. Tsipouras, and D.I. Fotiadis Automatic arrhythmia detection based on time and time-frequency analysis of heart rate variability Comp. Meth. Prog. Biomed. 74 2 2004 95 108 (Pubitemid 38315050)
    • (2004) Computer Methods and Programs in Biomedicine , vol.74 , Issue.2 , pp. 95-108
    • Tsipouras, M.G.1    Fotiadis, D.I.2
  • 8
    • 0036086572 scopus 로고    scopus 로고
    • A wavelet-based heart rate variability analysis for the study of nonsustained ventricular tachycardia
    • S.W. Chen A wavelet-based heart rate variability analysis for the study of nonsustained ventricular tachycardia IEEE Trans. Biomed. Eng. 49 7 2002 736 742
    • (2002) IEEE Trans. Biomed. Eng. , vol.49 , Issue.7 , pp. 736-742
    • Chen, S.W.1
  • 9
    • 13144284941 scopus 로고    scopus 로고
    • Analysis of cardiac signals using spatial filling index and time-frequency domain
    • O. Faust, R.U. Acharya, S.M. Krishnan, and L.C. Min Analysis of cardiac signals using spatial filling index and time-frequency domain Biomed. Eng. Online 3 2004 30
    • (2004) Biomed. Eng. Online , vol.3 , pp. 30
    • Faust, O.1    Acharya, R.U.2    Krishnan, S.M.3    Min, L.C.4
  • 11
    • 0029870969 scopus 로고    scopus 로고
    • Non-linear dynamics for clinicians: Chaos theory, fractals, and complexity at the bedside
    • DOI 10.1016/S0140-6736(96)90948-4
    • A.L. Goldberger Non-linear dynamics for clinicians: chaos theory fractals, and complexity at the bedside Lancet 11 1996 1312 1314 (Pubitemid 26137801)
    • (1996) Lancet , vol.347 , Issue.9011 , pp. 1312-1314
    • Goldberger, A.L.1
  • 14
    • 77955276689 scopus 로고    scopus 로고
    • Cardiac health diagnosis using higher order spectra and support vector machine
    • K.C. Chua, V. Chandran, R.U. Acharya, and L.C. Min Cardiac health diagnosis using higher order spectra and support vector machine Open Med. Inform. J. 3 2009 1 8
    • (2009) Open Med. Inform. J. , vol.3 , pp. 1-8
    • Chua, K.C.1    Chandran, V.2    Acharya, R.U.3    Min, L.C.4
  • 16
    • 34447109483 scopus 로고    scopus 로고
    • Heart rate variability as a predictor of sudden cardiac death
    • G. Kudaiberdieva, B. Görenek, and B. Timuralp Heart rate variability as a predictor of sudden cardiac death Anadolu Kardiyol Derg. 7 2007 68 70 (Pubitemid 47028976)
    • (2007) Anadolu Kardiyoloji Dergisi , vol.7 , Issue.SUPPL. 1 , pp. 68-70
    • Kudaiberdieva, G.1    Gorenek, B.2    Timuralp, B.3
  • 17
    • 50049126632 scopus 로고    scopus 로고
    • Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal
    • B.M. Asl, S.K. Setarehdan, and M. Mohebbi Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal Artif. Intell. Med. 44 1 2008 51 64
    • (2008) Artif. Intell. Med. , vol.44 , Issue.1 , pp. 51-64
    • Asl, B.M.1    Setarehdan, S.K.2    Mohebbi, M.3
  • 18
    • 84055214705 scopus 로고    scopus 로고
    • Classification of cardiac abnormalities using reduced features of heart rate variability signal
    • F. Yaghouby, A. Ayatollahi, and R. Soleimani Classification of cardiac abnormalities using reduced features of heart rate variability signal World Appl. Sci. J. 6 11 2009 1547 1554
    • (2009) World Appl. Sci. J. , vol.6 , Issue.11 , pp. 1547-1554
    • Yaghouby, F.1    Ayatollahi, A.2    Soleimani, R.3
  • 19
    • 79954595949 scopus 로고    scopus 로고
    • Electrocardiogram analysis using a combination of statistical, geometric, and nonlinear heart rate variability features
    • A. Jovic, and N. Bogunovic Electrocardiogram analysis using a combination of statistical, geometric, and nonlinear heart rate variability features Artif. Intell. Med. 51 2011 175 186
    • (2011) Artif. Intell. Med. , vol.51 , pp. 175-186
    • Jovic, A.1    Bogunovic, N.2
  • 20
    • 0037209480 scopus 로고    scopus 로고
    • Classification of heart rate data using artificial neural network and fuzzy equivalence relation
    • R.U. Acharya, P.S. Bhat, S.S. Iyengar, A. Raod, and S. Dua Classification of heart rate data using artificial neural network and fuzzy equivalence relation Pattern Recogn. 36 2003 61 68
    • (2003) Pattern Recogn. , vol.36 , pp. 61-68
    • Acharya, R.U.1    Bhat, P.S.2    Iyengar, S.S.3    Raod, A.4    Dua, S.5
  • 21
    • 78649329615 scopus 로고    scopus 로고
    • Towards automatic detection of atrial fibrillation: A hybrid computational approach
    • F. Yaghouby, A. Ayatollahi, R. Bahramali, M. Yaghouby, and A.H. Alavi Towards automatic detection of atrial fibrillation: a hybrid computational approach Comput. Biol. Med. 40 11-12 2010 919 930
    • (2010) Comput. Biol. Med. , vol.40 , Issue.1112 , pp. 919-930
    • Yaghouby, F.1    Ayatollahi, A.2    Bahramali, R.3    Yaghouby, M.4    Alavi, A.H.5
  • 23
    • 34447285485 scopus 로고    scopus 로고
    • A methodology for the automated creation of fuzzy expert systems for ischaemic and arrhythmic beat classification based on a set of rules obtained by a decision tree
    • DOI 10.1016/j.artmed.2007.04.001, PII S0933365707000504
    • T.P. Exarchos, M.G. Tsipouras, C.P. Exarchos, C. Papaloukas, D.I. Fotiadis, and L.K. Michalis A methodology for the automated creation of fuzzy expert systems for ischaemic and arrhythmic beat classification based on a set of rules obtained by a decision tree Artif. Intell. Med. 40 3 2007 187 200 (Pubitemid 47048715)
    • (2007) Artificial Intelligence in Medicine , vol.40 , Issue.3 , pp. 187-200
    • Exarchos, T.P.1    Tsipouras, M.G.2    Exarchos, C.P.3    Papaloukas, C.4    Fotiadis, D.I.5    Michalis, L.K.6
  • 24
    • 74049158271 scopus 로고    scopus 로고
    • Robust algorithm for arrhythmia classification in ECG using extreme learning machine
    • J. Kim, H.S. Shin, K. Shin, and M. Lee Robust algorithm for arrhythmia classification in ECG using extreme learning machine Biomed. Eng. Online 8 2009 31
    • (2009) Biomed. Eng. Online , vol.8 , pp. 31
    • Kim, J.1    Shin, H.S.2    Shin, K.3    Lee, M.4
  • 25
    • 78651313386 scopus 로고    scopus 로고
    • Discrimination power of short-term heart rate variability measures for CHF assessment
    • L. Pecchia, P. Melillo, M. Sansone, and M. Bracale Discrimination power of short-term heart rate variability measures for CHF assessment IEEE Trans. Inf. Technol. Biomed. 15 1 2011 40 46
    • (2011) IEEE Trans. Inf. Technol. Biomed. , vol.15 , Issue.1 , pp. 40-46
    • Pecchia, L.1    Melillo, P.2    Sansone, M.3    Bracale, M.4
  • 27
    • 0030370417 scopus 로고    scopus 로고
    • Bagging, Boosting, and C4.5
    • August 4-8, 1996, Portland, OR, USA MIT Press Cambridge, MA, USA
    • J.R. Quinlan Bagging, Boosting, and C4.5 AAAI, Proc 13th National Conf Artif Intell August 4-8, 1996, Portland, OR, USA 1996 MIT Press Cambridge, MA, USA 725 730
    • (1996) AAAI, Proc 13th National Conf Artif Intell , pp. 725-730
    • Quinlan, J.R.1
  • 28
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman Random forests Mach. Learn. 45 2001 5 32 (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 30
    • 34047164585 scopus 로고    scopus 로고
    • Automatic classification of heartbeats using neural network classifier based on a Bayesian framework
    • DOI 10.1109/IEMBS.2006.259356, 4029924, 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'06
    • G. Karraz, and G. Magenes Automatic classification of heartbeats using neural network classifier based on a Bayesian framework A. Laine, K.H. Chon, Conf Proc IEEE Eng Med Biol Soc 1 August 30-September 3, 2006, New York 2006 IEEE Press New York 4016 4019 (Pubitemid 46520791)
    • (2006) Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings , pp. 4016-4019
    • Karraz, G.1    Magenes, G.2
  • 33
    • 0041817581 scopus 로고    scopus 로고
    • Statistics and graphs for heart rate variability: PNN50 or pNN20?
    • T.P. Hutchinson Statistics and graphs for heart rate variability: pNN50 or pNN20? Physiol. Meas. 24 3 2003 N9 N14
    • (2003) Physiol. Meas. , vol.24 , Issue.3
    • Hutchinson, T.P.1
  • 37
    • 0028355806 scopus 로고
    • Physiological time-series analysis: What does regularity quantify?
    • S.M. Pincus, and A.L. Goldberger Physiological time-series analysis: what does regularity quantify? Am. J. Physiol. 266 Heart Circ. Physiol. 35 1994 H1643 H1656
    • (1994) Am. J. Physiol. , vol.266 , Issue.HEART CIRC. PHYSIOL. 35
    • Pincus, S.M.1    Goldberger, A.L.2
  • 38
    • 41349087285 scopus 로고    scopus 로고
    • Multiscale entropy analysis of biological signals
    • M. Costa, A.L. Goldberger, and C.K. Peng Multiscale entropy analysis of biological signals Phys. Rev. E 71 2005 021906
    • (2005) Phys. Rev. e , vol.71 , pp. 021906
    • Costa, M.1    Goldberger, A.L.2    Peng, C.K.3
  • 39
    • 32644482767 scopus 로고    scopus 로고
    • A fuzzy clustering neural network architecture for classification of ECG arrhythmias
    • DOI 10.1016/j.compbiomed.2005.01.006, PII S0010482505000417
    • Y. Özbay, R. Ceylan, and B. Karlik A fuzzy clustering neural network architecture for classification of ECG arrhythmias Comput. Biol. Med. 36 2006 376 388 (Pubitemid 43247768)
    • (2006) Computers in Biology and Medicine , vol.36 , Issue.4 , pp. 376-388
    • Ozbay, Y.1    Ceylan, R.2    Karlik, B.3
  • 42
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schöllkopf, C.J. Burges, A.J. Smola, MIT Press Cambridge, MA, USA
    • J. Platt Fast training of support vector machines using sequential minimal optimization B. Schöllkopf, C.J. Burges, A.J. Smola, Advances in Kernel Methods - Support Vector Learning 1998 MIT Press Cambridge, MA, USA 185 208
    • (1998) Advances in Kernel Methods - Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 43
    • 84983110889 scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • P.M.B. Vitányi, March 13-15, 1995, Barcelona, Spain Springer-Verlag London, UK
    • Y. Freund, and R.E. Schapire A decision-theoretic generalization of on-line learning and an application to boosting P.M.B. Vitányi, Proc 2nd Eur Conf Comput Learn Theory EuroCOLT '95 March 13-15, 1995, Barcelona, Spain 1995 Springer-Verlag London, UK 23 37
    • (1995) Proc 2nd Eur Conf Comput Learn Theory EuroCOLT '95 , pp. 23-37
    • Freund, Y.1    Schapire, R.E.2
  • 45
    • 78649746673 scopus 로고    scopus 로고
    • A comparative study of bagging, boosting and C4.5: The recent improvements in decision tree learning algorithm
    • S. Pramanik, U.N. Chowdhury, B.K. Pramanik, and N. Huda A comparative study of bagging, boosting and C4.5: the recent improvements in decision tree learning algorithm Asian J. Inf. Technol. 9 6 2010 300 306
    • (2010) Asian J. Inf. Technol. , vol.9 , Issue.6 , pp. 300-306
    • Pramanik, S.1    Chowdhury, U.N.2    Pramanik, B.K.3    Huda, N.4
  • 47
    • 80053012140 scopus 로고    scopus 로고
    • HRVFrame: Java-based framework for feature extraction from cardiac rhythm
    • A. Jovic, and N. Bogunovic HRVFrame: Java-based framework for feature extraction from cardiac rhythm Lect. Notes Artif. Intell. 6747 2011 96 100
    • (2011) Lect. Notes Artif. Intell. , vol.6747 , pp. 96-100
    • Jovic, A.1    Bogunovic, N.2
  • 48
    • 70450208832 scopus 로고    scopus 로고
    • Feature set extension for heart rate variability analysis by using non-linear, statistical and geometric measures
    • V. Luzar-Stiffler, I. Jarec, Z. Bekic, June 22-25, 2009, Cavtat/Dubrovnik, Croatia SRCE Zagreb, Croatia
    • A. Jovic, and N. Bogunovic Feature set extension for heart rate variability analysis by using non-linear, statistical and geometric measures V. Luzar-Stiffler, I. Jarec, Z. Bekic, Proc 31st Int Conf Information Technology Interfaces ITI 2009 June 22-25, 2009, Cavtat/Dubrovnik, Croatia 2009 SRCE Zagreb, Croatia 35 40
    • (2009) Proc 31st Int Conf Information Technology Interfaces ITI 2009 , pp. 35-40
    • Jovic, A.1    Bogunovic, N.2
  • 51
    • 0242410408 scopus 로고    scopus 로고
    • Benchmarking attribute selection techniques for discrete class data mining
    • M.A. Hall, and G. Holmes Benchmarking attribute selection techniques for discrete class data mining IEEE Trans. Knowl. Data Eng. 15 3 2003 1437 1447
    • (2003) IEEE Trans. Knowl. Data Eng. , vol.15 , Issue.3 , pp. 1437-1447
    • Hall, M.A.1    Holmes, G.2
  • 52
    • 11244308266 scopus 로고    scopus 로고
    • Class-boundary alignment for imbalanced dataset learning
    • T. Fawcett, N. Mishra, August 21-24, 2003, Washington, DC AAAI Press
    • G. Wu, and E. Chang Class-boundary alignment for imbalanced dataset learning T. Fawcett, N. Mishra, Proc ICML 2003 Workshop on Learning from Imbalanced Data Sets II August 21-24, 2003, Washington, DC 2003 AAAI Press 49 56
    • (2003) Proc ICML 2003 Workshop on Learning from Imbalanced Data Sets II , pp. 49-56
    • Wu, G.1    Chang, E.2
  • 53
    • 0036756222 scopus 로고    scopus 로고
    • Uniqueness of medical data mining
    • DOI 10.1016/S0933-3657(02)00049-0, PII S0933365702000490
    • K.J. Cios, and G.W. Moore Uniqueness of medical data mining Artif. Intell. Med. 26 1-2 2002 1 24 (Pubitemid 35299395)
    • (2002) Artificial Intelligence in Medicine , vol.26 , Issue.1-2 , pp. 1-24
    • Cios, K.J.1    William Moore, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.