메뉴 건너뛰기




Volumn 40, Issue 11-12, 2010, Pages 919-930

Towards automatic detection of atrial fibrillation: A hybrid computational approach

Author keywords

Arrhythmia detection; Atrial fibrillation; Forward floating selection; Genetic programming; Heart rate variability signal; Orthogonal least squares; Simulated annealing

Indexed keywords

ARRHYTHMIA DETECTION; ATRIAL FIBRILLATION; FORWARD FLOATING SELECTION; HEART RATE VARIABILITY SIGNAL; ORTHOGONAL LEAST SQUARES;

EID: 78649329615     PISSN: 00104825     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2010.10.004     Document Type: Article
Times cited : (50)

References (57)
  • 1
    • 0028940273 scopus 로고
    • Atrial fibrillation and anticoagulant therapy
    • Wheeldon N.M. Atrial fibrillation and anticoagulant therapy. Euro. Heart J. 1995, 16:302-312.
    • (1995) Euro. Heart J. , vol.16 , pp. 302-312
    • Wheeldon, N.M.1
  • 2
    • 0021005941 scopus 로고
    • A new method for detecting atrial fibrillation using R-R intervals, in: Computers in Cardiology, Aachen, Germany
    • G. Moody, R.G. Mark, A new method for detecting atrial fibrillation using R-R intervals, in: Computers in Cardiology, Aachen, Germany, 1983, pp. 227-230.
    • (1983) , pp. 227-230
    • Moody, G.1    Mark, R.G.2
  • 3
    • 34250886271 scopus 로고    scopus 로고
    • Atrial fibrillation classification with artificial neural networks
    • Kara S., Okandan M. Atrial fibrillation classification with artificial neural networks. Pattern Recogn. 2007, 40:2967-2973.
    • (2007) Pattern Recogn. , vol.40 , pp. 2967-2973
    • Kara, S.1    Okandan, M.2
  • 4
  • 5
    • 0004191820 scopus 로고    scopus 로고
    • W.C. Brown Publishers, Boston
    • Fox S.I. Human Physiology 1996, W.C. Brown Publishers, Boston.
    • (1996) Human Physiology
    • Fox, S.I.1
  • 6
    • 33645454015 scopus 로고    scopus 로고
    • Management of atrial fibrillation-what are the possibilities of early detection with home monitoring?
    • Ricci R.P., Russo M., Santini M. Management of atrial fibrillation-what are the possibilities of early detection with home monitoring?. Clin. Res. Cardiol. 2006, 95:1861-1892.
    • (2006) Clin. Res. Cardiol. , vol.95 , pp. 1861-1892
    • Ricci, R.P.1    Russo, M.2    Santini, M.3
  • 7
    • 0036950463 scopus 로고    scopus 로고
    • Shape characterization of atrial fibrillation using time-frequency analysis
    • Stridh M., Sornmo L. Shape characterization of atrial fibrillation using time-frequency analysis. Comput. Cardiol. 2002, 17-20.
    • (2002) Comput. Cardiol. , pp. 17-20
    • Stridh, M.1    Sornmo, L.2
  • 8
    • 0027232855 scopus 로고
    • The signal-averaged P wave duration: a rapid and noninvasive marker of risk of atrial fibrillation
    • Guidera S., Steinberg J. The signal-averaged P wave duration: a rapid and noninvasive marker of risk of atrial fibrillation. J. Am. Coll. Cardiol. 1993, 21:1645-1651.
    • (1993) J. Am. Coll. Cardiol. , vol.21 , pp. 1645-1651
    • Guidera, S.1    Steinberg, J.2
  • 9
    • 0034480918 scopus 로고    scopus 로고
    • A method for detection of atrial fibrillation using R-R intervals
    • Tateno K., Glass L. A method for detection of atrial fibrillation using R-R intervals. Comput. Cardiol. 2000, 27:391-394.
    • (2000) Comput. Cardiol. , vol.27 , pp. 391-394
    • Tateno, K.1    Glass, L.2
  • 10
    • 0035690114 scopus 로고    scopus 로고
    • Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and δRR intervals
    • Tateno K., Glass L. Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and δRR intervals. Med. Biol. Eng. Comput. 2001, 39:664-671.
    • (2001) Med. Biol. Eng. Comput. , vol.39 , pp. 664-671
    • Tateno, K.1    Glass, L.2
  • 11
    • 33847170597 scopus 로고    scopus 로고
    • Robust detection of atrial fibrillation for a long term telemonitoring system
    • Logan B., Healey J. Robust detection of atrial fibrillation for a long term telemonitoring system. Comput. Cardiol. 2005, 619-622.
    • (2005) Comput. Cardiol. , pp. 619-622
    • Logan, B.1    Healey, J.2
  • 12
    • 0033344931 scopus 로고    scopus 로고
    • A comparative study of a hidden Markov model detector for atrial fibrillation, in: Proceedings of the Neural Networks for Signal Processing IX (IEEE Signal Processing Society Workshop)
    • B. Young, D. Brodnick, R. Spaulding, A comparative study of a hidden Markov model detector for atrial fibrillation, in: Proceedings of the Neural Networks for Signal Processing IX (IEEE Signal Processing Society Workshop), 1999, pp. 468-476.
    • (1999) , pp. 468-476
    • Young, B.1    Brodnick, D.2    Spaulding, R.3
  • 13
    • 61849100442 scopus 로고    scopus 로고
    • Detection of atrial fibrillation episodes using multiple heart rate variability features in different time periods, in: Proceedings of the Engineering in Medicine and Biology Society (IEMBS '08. 30th Annual International Conference of the IEEE)
    • D. Kim, Y. Seo, C.H. Youn, Detection of atrial fibrillation episodes using multiple heart rate variability features in different time periods, in: Proceedings of the Engineering in Medicine and Biology Society (IEMBS '08. 30th Annual International Conference of the IEEE), 2008, pp. 5482-5485.
    • (2008) , pp. 5482-5485
    • Kim, D.1    Seo, Y.2    Youn, C.H.3
  • 14
    • 61849104811 scopus 로고    scopus 로고
    • Detection of atrial fibrillation episodes using SVM, in: Proceedings of the Engineering in Medicine and Biology Society (IEMBS '08. 30th Annual International Conference of the IEEE)
    • M. Mohebbi, H. Ghassemian, Detection of atrial fibrillation episodes using SVM, in: Proceedings of the Engineering in Medicine and Biology Society (IEMBS '08. 30th Annual International Conference of the IEEE), 2008, pp. 177-180.
    • (2008) , pp. 177-180
    • Mohebbi, M.1    Ghassemian, H.2
  • 15
    • 57849128443 scopus 로고    scopus 로고
    • A probability density function method for detecting atrial fibrillation using R-R intervals
    • Hong-wei L., Ying S., Min L., Pi-ding L., Zheng Z. A probability density function method for detecting atrial fibrillation using R-R intervals. Med. Eng. Phys. 2009, 31:116-123.
    • (2009) Med. Eng. Phys. , vol.31 , pp. 116-123
    • Hong-wei, L.1    Ying, S.2    Min, L.3    Pi-ding, L.4    Zheng, Z.5
  • 18
    • 65449164499 scopus 로고    scopus 로고
    • Automated detection of breast cancer from screening mammograms using genetic programming
    • Sheta W., Eltonsy N., Tourassi G., Elmaghraby A. Automated detection of breast cancer from screening mammograms using genetic programming. IJICIS 2005, 5:309-318.
    • (2005) IJICIS , vol.5 , pp. 309-318
    • Sheta, W.1    Eltonsy, N.2    Tourassi, G.3    Elmaghraby, A.4
  • 19
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their application to non-linear system identification
    • Chen S., Billings S., Luo W. Orthogonal least squares methods and their application to non-linear system identification. Int. J. Control 1989, 50:1873-1896.
    • (1989) Int. J. Control , vol.50 , pp. 1873-1896
    • Chen, S.1    Billings, S.2    Luo, W.3
  • 20
    • 78649327727 scopus 로고    scopus 로고
    • Genetic programming for system identification, in: Proceedings of the Intelligent Systems Design and Applications (ISDA 2004), Budapest, Hungary
    • J. Madár, J. Abonyi, F. Szeifert, Genetic programming for system identification, in: Proceedings of the Intelligent Systems Design and Applications (ISDA 2004), Budapest, Hungary, 2004.
    • (2004)
    • Madár, J.1    Abonyi, J.2    Szeifert, F.3
  • 21
    • 19844362946 scopus 로고    scopus 로고
    • Genetic programming for the identification of nonlinear input-output models
    • Madár J., Abonyi J., Szeifer F. Genetic programming for the identification of nonlinear input-output models. Ind. Eng. Chem. Res. 2005, 44:3178-3186.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 3178-3186
    • Madár, J.1    Abonyi, J.2    Szeifer, F.3
  • 24
    • 0021819411 scopus 로고
    • Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm
    • Cerny V. Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optimiz. Theory Appl. 1985, 45:41-52.
    • (1985) J. Optimiz. Theory Appl. , vol.45 , pp. 41-52
    • Cerny, V.1
  • 25
    • 43949164756 scopus 로고
    • Simulated annealing: practice versus theory
    • Ingber L. Simulated annealing: practice versus theory. Math. Comput. Model 1993, 18:29-57.
    • (1993) Math. Comput. Model , vol.18 , pp. 29-57
    • Ingber, L.1
  • 26
    • 84958750028 scopus 로고    scopus 로고
    • Genetic programming and simulated annealing: a hybrid method to evolve decision trees, in: Proceedings of the EuroGP'2000, Edinburgh, Springer-Verlag
    • G. Folino, C. Pizzuti, G. Spezzano, Genetic programming and simulated annealing: a hybrid method to evolve decision trees, in: Proceedings of the EuroGP'2000, Edinburgh, Springer-Verlag, 2000, pp. 294-303.
    • (2000) , pp. 294-303
    • Folino, G.1    Pizzuti, C.2    Spezzano, G.3
  • 27
    • 0037289921 scopus 로고    scopus 로고
    • Selecting nonlinear model structures for computer control
    • Pearson R. Selecting nonlinear model structures for computer control. J. Process Contr. 2003, 13:1-26.
    • (2003) J. Process Contr. , vol.13 , pp. 1-26
    • Pearson, R.1
  • 28
    • 0001017536 scopus 로고    scopus 로고
    • Genetic algorithm for the operations research
    • Reeves C.R. Genetic algorithm for the operations research. Int. J. Comput. 1997, 9:231-250.
    • (1997) Int. J. Comput. , vol.9 , pp. 231-250
    • Reeves, C.R.1
  • 29
    • 0024067409 scopus 로고
    • Identification of nonlinear output affine systems using an orthogonal least-squares algorithm
    • Billing S., Korenberg M., Chen S. Identification of nonlinear output affine systems using an orthogonal least-squares algorithm. Int. J. Syst. Sci. 1988, 19:1559-1568.
    • (1988) Int. J. Syst. Sci. , vol.19 , pp. 1559-1568
    • Billing, S.1    Korenberg, M.2    Chen, S.3
  • 30
    • 0242718582 scopus 로고    scopus 로고
    • The kinetic evolutionary modelling of complex systems of chemical reactions
    • Cao H., Yu J., Kang L., Chen Y. The kinetic evolutionary modelling of complex systems of chemical reactions. Comput. Chem. Eng. 1999, 23:143-151.
    • (1999) Comput. Chem. Eng. , vol.23 , pp. 143-151
    • Cao, H.1    Yu, J.2    Kang, L.3    Chen, Y.4
  • 32
    • 0034953193 scopus 로고    scopus 로고
    • The impact of the MIT-BIH arrhythmia database
    • Moody G., Mark R. The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. 2001, 20:45-50.
    • (2001) IEEE Eng. Med. Biol. , vol.20 , pp. 45-50
    • Moody, G.1    Mark, R.2
  • 34
    • 0022929617 scopus 로고
    • Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database
    • Hamilton P.S., Tompkins W.J. Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Bio-med. Eng. 1986, 33:1157-1165.
    • (1986) IEEE Bio-med. Eng. , vol.33 , pp. 1157-1165
    • Hamilton, P.S.1    Tompkins, W.J.2
  • 36
    • 38349013344 scopus 로고    scopus 로고
    • Analysis of first-derivative based QRS detection algorithm
    • Arzeno N., Deng Z.D., Poon C.S. Analysis of first-derivative based QRS detection algorithm. IEEE Bio-med. Eng. 2008, 55:478-484.
    • (2008) IEEE Bio-med. Eng. , vol.55 , pp. 478-484
    • Arzeno, N.1    Deng, Z.D.2    Poon, C.S.3
  • 37
    • 50049126632 scopus 로고    scopus 로고
    • Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal
    • Asl B.M., Setarehdan S.K., Mohebbi M. Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artif. Intell. Med. 2008, 44:51-64.
    • (2008) Artif. Intell. Med. , vol.44 , pp. 51-64
    • Asl, B.M.1    Setarehdan, S.K.2    Mohebbi, M.3
  • 38
    • 0029988782 scopus 로고    scopus 로고
    • Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology Heart Rate Variability: standards of measurement, physiological interpretation and clinical use
    • Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology Heart Rate Variability: standards of measurement, physiological interpretation and clinical use, Eur. Heart J. 17 (1996), pp. 354-381.
    • (1996) Eur. Heart J. , vol.17 , pp. 354-381
  • 40
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • Kudo M., Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recogn. 2000, 33:25-41.
    • (2000) Pattern Recogn. , vol.33 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 41
    • 0033220764 scopus 로고    scopus 로고
    • Adaptive floating search methods in feature selection
    • Somol P., Pudil P., Novovicova J., Pacliik P. Adaptive floating search methods in feature selection. Pattern Recogn. Lett. 1999, 20(11/13):1157-1163.
    • (1999) Pattern Recogn. Lett. , vol.20 , Issue.11-13 , pp. 1157-1163
    • Somol, P.1    Pudil, P.2    Novovicova, J.3    Pacliik, P.4
  • 42
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: evaluation, application and small sample performance
    • Jain A., Zongker D. Feature selection: evaluation, application and small sample performance. IEEE Trans. PAMI 1997, 19:153-158.
    • (1997) IEEE Trans. PAMI , vol.19 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 43
    • 56749164069 scopus 로고    scopus 로고
    • Improved forward floating selection algorithm for feature subset selection, in: Wavelet Analysis and Pattern Recognition, Hong Kong,
    • S. Nakariyakul, D.P. Casasent, Improved forward floating selection algorithm for feature subset selection, in: Wavelet Analysis and Pattern Recognition, Hong Kong, 2008, pp. 30-31.
    • (2008) , pp. 30-31
    • Nakariyakul, S.1    Casasent, D.P.2
  • 44
    • 34250815597 scopus 로고    scopus 로고
    • Adaptive branch and bound algorithm for selecting optimal features
    • Nakariyakul S., Casasent D.P. Adaptive branch and bound algorithm for selecting optimal features. Pattern Recogn. Lett. 2007, 28:1415-1427.
    • (2007) Pattern Recogn. Lett. , vol.28 , pp. 1415-1427
    • Nakariyakul, S.1    Casasent, D.P.2
  • 45
    • 78649323360 scopus 로고    scopus 로고
    • Genetic Programming for the Identification of Nonlinear Input-Output Models, White paper, 〈〉.
    • J. Madár, J. Abonyi, F. Szeifert, Genetic Programming for the Identification of Nonlinear Input-Output Models, White paper, 2005. 〈〉. http://www.fmt.vein.hu/softcomp/gp/ie049626e.pdf.
    • (2005)
    • Madár, J.1    Abonyi, J.2    Szeifert, F.3
  • 46
    • 78649325494 scopus 로고    scopus 로고
    • Discipulus-fast genetic programming based on AIM learning technology, Register Machine Learning Technologies Inc.Littleton, CO
    • M. Conrads, O. Dolezal, F.D. Francone, P. Nordin, Discipulus-fast genetic programming based on AIM learning technology, Register Machine Learning Technologies Inc.Littleton, CO, 2004.
    • (2004)
    • Conrads, M.1    Dolezal, O.2    Francone, F.D.3    Nordin, P.4
  • 47
    • 0031836722 scopus 로고    scopus 로고
    • Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation
    • Dilaveris P.E., Gialafos E., Sideris S. Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation. Am. Heart J. 1998, 135:73-78.
    • (1998) Am. Heart J. , vol.135 , pp. 73-78
    • Dilaveris, P.E.1    Gialafos, E.2    Sideris, S.3
  • 48
    • 0026098633 scopus 로고
    • Detection of patients at risk for paroxysmal atrial fibrillation during sinus rhythm by P wave-triggered signal-averaged electrocardiogram
    • Fukunami M., Yamada T., Ohmori M., Kumagai K., Umemoto K., Sakai A., Kondoh N., Minamino T., Hoki N. Detection of patients at risk for paroxysmal atrial fibrillation during sinus rhythm by P wave-triggered signal-averaged electrocardiogram. Circulation 1991, 83:162-169.
    • (1991) Circulation , vol.83 , pp. 162-169
    • Fukunami, M.1    Yamada, T.2    Ohmori, M.3    Kumagai, K.4    Umemoto, K.5    Sakai, A.6    Kondoh, N.7    Minamino, T.8    Hoki, N.9
  • 49
    • 0035718270 scopus 로고    scopus 로고
    • Sequential analysis for automatic detection of atrial fibrillation and flutter
    • Christov I., Bortolan G., Daskalov I. Sequential analysis for automatic detection of atrial fibrillation and flutter. Comput. 2001, 293-296.
    • (2001) Comput. , pp. 293-296
    • Christov, I.1    Bortolan, G.2    Daskalov, I.3
  • 50
    • 51849118392 scopus 로고    scopus 로고
    • Feature extraction for improving the support vector machine biomedical data classifier performance
    • Kostka P.S., Tkacz E.J. Feature extraction for improving the support vector machine biomedical data classifier performance. Inf. Technol. Appl. Biomed. 2008, 362-365.
    • (2008) Inf. Technol. Appl. Biomed. , pp. 362-365
    • Kostka, P.S.1    Tkacz, E.J.2
  • 51
    • 61849177421 scopus 로고    scopus 로고
    • Atrial fibrillation detection using stationary wavelet Transform Analysis, in: Proceedings of the Engineering in Medicine and Biology Society (IEMBS '08. 30th Annual International Conference of the IEEE)
    • B. Weng, J.J. Wang, F. Michaud, M. Blanco-velasco, Atrial fibrillation detection using stationary wavelet Transform Analysis, in: Proceedings of the Engineering in Medicine and Biology Society (IEMBS '08. 30th Annual International Conference of the IEEE), 2008, pp. 1128-1131.
    • (2008) , pp. 1128-1131
    • Weng, B.1    Wang, J.J.2    Michaud, F.3    Blanco-velasco, M.4
  • 52
    • 61849120323 scopus 로고    scopus 로고
    • Feature extraction based on time-frequency and independent component analysis for improvement of separation ability in atrial fibrillation detector, in: Proceedings of the Engineering in Medicine and Biology Society (IEMBS '08. 30th Annual International Conference of the IEEE)
    • P.S. Kostka, E.J. Tkacz, Feature extraction based on time-frequency and independent component analysis for improvement of separation ability in atrial fibrillation detector, in: Proceedings of the Engineering in Medicine and Biology Society (IEMBS '08. 30th Annual International Conference of the IEEE), 2008, pp. 2960-2963.
    • (2008) , pp. 2960-2963
    • Kostka, P.S.1    Tkacz, E.J.2
  • 53
    • 61849118911 scopus 로고    scopus 로고
    • RR interval analysis for detection of atrial fibrillation in ECG monitors, in: Proceedings of the Engineering in Medicine and Biology Society (IEMBS '08. 30th Annual International Conference of the IEEE)
    • A. Ghodrati, B. Murray, S. Marinello, RR interval analysis for detection of atrial fibrillation in ECG monitors, in: Proceedings of the Engineering in Medicine and Biology Society (IEMBS '08. 30th Annual International Conference of the IEEE), 2008, pp. 601-604.
    • (2008) , pp. 601-604
    • Ghodrati, A.1    Murray, B.2    Marinello, S.3
  • 54
    • 0035716756 scopus 로고    scopus 로고
    • Multi-thread implementation of a fuzzy neural network for automatic ECG arrhythmia detection
    • Rodriguez C.A.R., Silveira M.A.H. Multi-thread implementation of a fuzzy neural network for automatic ECG arrhythmia detection. Comput. Cardiol. 2001, 28:297-300.
    • (2001) Comput. Cardiol. , vol.28 , pp. 297-300
    • Rodriguez, C.A.R.1    Silveira, M.A.H.2
  • 56
    • 33747603232 scopus 로고    scopus 로고
    • Improved fault quantification for a plate structure
    • Choi S., Park S., Park N., Stabbs N. Improved fault quantification for a plate structure. J. Sound Vib. 2006, 297:865-879.
    • (2006) J. Sound Vib. , vol.297 , pp. 865-879
    • Choi, S.1    Park, S.2    Park, N.3    Stabbs, N.4
  • 57
    • 0033472761 scopus 로고    scopus 로고
    • Fuzzy neural network as instance generator for case-based reasoning system: an example of selection of heat exchange equipment in mixing
    • Kraslawski A., Pedrycz W., Nyström L. Fuzzy neural network as instance generator for case-based reasoning system: an example of selection of heat exchange equipment in mixing. Neural Comput. Appl. 1999, 8(2):106-113.
    • (1999) Neural Comput. Appl. , vol.8 , Issue.2 , pp. 106-113
    • Kraslawski, A.1    Pedrycz, W.2    Nyström, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.