메뉴 건너뛰기




Volumn 51, Issue 3, 2011, Pages 175-186

Electrocardiogram analysis using a combination of statistical, geometric, and nonlinear heart rate variability features

Author keywords

C4.5 decision tree; Heart disorder classification; Heart rate variability; Nonlinear analysis; Random forest; Support vector machines

Indexed keywords

APPROXIMATE ENTROPY; ARTIFICIAL NEURAL NETWORK; C4.5 DECISION TREE; CARDIAC DISORDERS; CLASSIFICATION ACCURACY; CLASSIFICATION ALGORITHM; CLASSIFICATION METHODS; CLASSIFICATION RESULTS; CLASSIFICATION RULES; CLUSTERING RESULTS; CONGESTIVE HEART FAILURES; CORRELATION DIMENSIONS; ELECTROCARDIOGRAM ANALYSIS; EXPECTATION MAXIMIZATION; FEATURE VECTORS; HEART RATE VARIABILITY; K-MEANS; MACHINE LEARNING ALGORITHMS; MULTI-CLASS CLASSIFICATION; MULTICLASS CLASSIFICATION PROBLEMS; NONLINEAR FEATURES; ONLINE DATABASE; PATIENT RECORD; RANDOM FORESTS; RR INTERVALS; SINGLE PERIOD;

EID: 79954595949     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artmed.2010.09.005     Document Type: Article
Times cited : (105)

References (49)
  • 1
    • 0020468801 scopus 로고
    • The interaction between heart rate and respiration: part II - nonlinear analysis based on computer modelling
    • Kitney R.I., Linkens D., Selman A., McDonald A. The interaction between heart rate and respiration: part II - nonlinear analysis based on computer modelling. Automedica 1982, 4:141-153.
    • (1982) Automedica , vol.4 , pp. 141-153
    • Kitney, R.I.1    Linkens, D.2    Selman, A.3    McDonald, A.4
  • 2
    • 0029988782 scopus 로고    scopus 로고
    • Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology, Heart rate variability guidelines: Standards of measurement, physiological interpretation, and clinical use, European Heart Journal
    • Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology, Heart rate variability guidelines: Standards of measurement, physiological interpretation, and clinical use, European Heart Journal 1996;17:354-81.
    • (1996) , vol.17 , pp. 354-81
  • 3
    • 0029870969 scopus 로고    scopus 로고
    • Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside
    • Goldberger A.L. Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet 1996, 11:1312-1314.
    • (1996) Lancet , vol.11 , pp. 1312-1314
    • Goldberger, A.L.1
  • 4
    • 0030666547 scopus 로고    scopus 로고
    • Fractal variability versus pathologic periodicity: complexity loss and stereotype in disease
    • Goldberger A.L. Fractal variability versus pathologic periodicity: complexity loss and stereotype in disease. Perspectives in Biology and Medicine 1997, 40:543-561.
    • (1997) Perspectives in Biology and Medicine , vol.40 , pp. 543-561
    • Goldberger, A.L.1
  • 8
    • 0029859714 scopus 로고    scopus 로고
    • Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics
    • Iyengar N., Peng C.K., Goldberger A.L., Lipsitz L.A. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. American Journal of Physiology 1996, 271:1078-1084.
    • (1996) American Journal of Physiology , vol.271 , pp. 1078-1084
    • Iyengar, N.1    Peng, C.K.2    Goldberger, A.L.3    Lipsitz, L.A.4
  • 12
    • 1542375476 scopus 로고    scopus 로고
    • Automatic arrhythmia detection based on time and time-frequency analysis of heart rate variability
    • Tsipouras M.G., Fotiadis D.I. Automatic arrhythmia detection based on time and time-frequency analysis of heart rate variability. Computer Methods and Programs in Biomedicine 2004, 74:95-108.
    • (2004) Computer Methods and Programs in Biomedicine , vol.74 , pp. 95-108
    • Tsipouras, M.G.1    Fotiadis, D.I.2
  • 13
    • 50049126632 scopus 로고    scopus 로고
    • Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal
    • Asl B.M., Setarehdan S.K., Mohebbi M. Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artificial Intelligence in Medicine 2008, 44(1):51-64.
    • (2008) Artificial Intelligence in Medicine , vol.44 , Issue.1 , pp. 51-64
    • Asl, B.M.1    Setarehdan, S.K.2    Mohebbi, M.3
  • 15
    • 39549123616 scopus 로고    scopus 로고
    • Recurrent neural networks with composite features for detection of electrocardiographic changes in partial epileptic patients
    • Ubeyli E.D. Recurrent neural networks with composite features for detection of electrocardiographic changes in partial epileptic patients. Computers in Biology and Medicine 2008, 38:401-410.
    • (2008) Computers in Biology and Medicine , vol.38 , pp. 401-410
    • Ubeyli, E.D.1
  • 16
    • 0028355806 scopus 로고
    • Physiological time-series analysis: what does regularity quantify?
    • Pincus S.M., Goldberger A.L. Physiological time-series analysis: what does regularity quantify?. American Journal of Physiology 1994, 266(4 Pt 2):H1643-H1656.
    • (1994) American Journal of Physiology , vol.266 , Issue.4 PART 2
    • Pincus, S.M.1    Goldberger, A.L.2
  • 17
    • 0033949457 scopus 로고    scopus 로고
    • Physiological time-series analysis using approximate entropy and sample entropy
    • Richman J.S., Moorman J.R. Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology 2000, 278(6):H2039-H2049.
    • (2000) American Journal of Physiology , vol.278 , Issue.6
    • Richman, J.S.1    Moorman, J.R.2
  • 18
    • 0030762575 scopus 로고    scopus 로고
    • Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics
    • Ho K.K.L., Moody G.B., Peng C.K., Mietus J.E., Larson M.G., Levy D., et al. Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation 1997, 96(3):842-848.
    • (1997) Circulation , vol.96 , Issue.3 , pp. 842-848
    • Ho, K.K.L.1    Moody, G.B.2    Peng, C.K.3    Mietus, J.E.4    Larson, M.G.5    Levy, D.6
  • 19
    • 0034315996 scopus 로고    scopus 로고
    • Validity test for a set of nonlinear measures for short data length with reference to short-term heart rate variability signal
    • Seker R., Saliu S., Birand A., Kudaiberdieva G. Validity test for a set of nonlinear measures for short data length with reference to short-term heart rate variability signal. Journal of Systems Integration 2000, 10:41-53.
    • (2000) Journal of Systems Integration , vol.10 , pp. 41-53
    • Seker, R.1    Saliu, S.2    Birand, A.3    Kudaiberdieva, G.4
  • 20
    • 1842722362 scopus 로고    scopus 로고
    • Multiscale entropy analysis of complex physiologic time series
    • Costa M., Goldberger A.L., Peng C.K. Multiscale entropy analysis of complex physiologic time series. Physical Review Letters 2002, 89(6):068102.
    • (2002) Physical Review Letters , vol.89 , Issue.6 , pp. 068102
    • Costa, M.1    Goldberger, A.L.2    Peng, C.K.3
  • 21
    • 35548992696 scopus 로고    scopus 로고
    • Multiscale analysis of short term heart beat interval, arterial blood pressure, and instantaneous lung volume time series
    • Angelini L., Maestri R., Marinazzo D., Nitti L., Pellicoro M., Pinna G.D., et al. Multiscale analysis of short term heart beat interval, arterial blood pressure, and instantaneous lung volume time series. Artificial Intelligence in Medicine 2007, 41(3):237-250.
    • (2007) Artificial Intelligence in Medicine , vol.41 , Issue.3 , pp. 237-250
    • Angelini, L.1    Maestri, R.2    Marinazzo, D.3    Nitti, L.4    Pellicoro, M.5    Pinna, G.D.6
  • 24
    • 0029434863 scopus 로고
    • Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series
    • Peng C.K., Havlin S., Stanley H.E., Goldberger A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995, 5(1):82-87.
    • (1995) Chaos , vol.5 , Issue.1 , pp. 82-87
    • Peng, C.K.1    Havlin, S.2    Stanley, H.E.3    Goldberger, A.L.4
  • 27
    • 33947125598 scopus 로고    scopus 로고
    • Assessment of the classification capability of prediction and approximation methods for HRV analysis
    • Manis G., Nikolopoulos S., Alexandridi A., Davos C. Assessment of the classification capability of prediction and approximation methods for HRV analysis. Computers in Biology and Medicine 2007, 37:642-654.
    • (2007) Computers in Biology and Medicine , vol.37 , pp. 642-654
    • Manis, G.1    Nikolopoulos, S.2    Alexandridi, A.3    Davos, C.4
  • 28
    • 34047224578 scopus 로고    scopus 로고
    • Artech House, Norwood MA, USA, G.D. Clifford, F. Azuaje, P.E. McSharry (Eds.)
    • Advanced methods and tools for ECG data analysis 2006, Artech House, Norwood MA, USA. G.D. Clifford, F. Azuaje, P.E. McSharry (Eds.).
    • (2006) Advanced methods and tools for ECG data analysis
  • 29
    • 79954622722 scopus 로고    scopus 로고
    • PhysioBank: Physiologic signal archives for biomedical research
    • PhysioBank: Physiologic signal archives for biomedical research, http://www.physionet.org/.
  • 30
    • 0037209480 scopus 로고    scopus 로고
    • Classification of heart rate data using artificial neural network and fuzzy equivalence relation
    • Acharya R.U., Bhat P.S., Iyengar S.S., Raod A., Dua S. Classification of heart rate data using artificial neural network and fuzzy equivalence relation. Pattern Recognition 2003, 36:61-68.
    • (2003) Pattern Recognition , vol.36 , pp. 61-68
    • Acharya, R.U.1    Bhat, P.S.2    Iyengar, S.S.3    Raod, A.4    Dua, S.5
  • 31
    • 0033104431 scopus 로고    scopus 로고
    • Radial basis function neural networks for the characterization of heart rate variability dynamics
    • Bezerianos A., Papadimitriou S., Alexopoulos D. Radial basis function neural networks for the characterization of heart rate variability dynamics. Artificial Intelligence in Medicine 1999, 15(3):215-234.
    • (1999) Artificial Intelligence in Medicine , vol.15 , Issue.3 , pp. 215-234
    • Bezerianos, A.1    Papadimitriou, S.2    Alexopoulos, D.3
  • 32
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 1998, 2:121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, J.C.1
  • 34
    • 34548265725 scopus 로고    scopus 로고
    • Improving diagnostic ability of blood oxygen saturation from overnight pulse oximetry in obstructive sleep apnea detection by means of central tendency measure
    • Alvarez D., Hornero R., Garcia M., del Campo F., Zamarron C. Improving diagnostic ability of blood oxygen saturation from overnight pulse oximetry in obstructive sleep apnea detection by means of central tendency measure. Artificial Intelligence in Medicine 2007, 41(1):13-24.
    • (2007) Artificial Intelligence in Medicine , vol.41 , Issue.1 , pp. 13-24
    • Alvarez, D.1    Hornero, R.2    Garcia, M.3    del Campo, F.4    Zamarron, C.5
  • 38
  • 39
    • 0036785065 scopus 로고    scopus 로고
    • The pNNx files: re-examining a widely used heart rate variability measure
    • Mietus J.E., Peng C.K., Henry I., Goldsmith R.L., Goldberger A.L. The pNNx files: re-examining a widely used heart rate variability measure. Heart 2002, 88:378-380.
    • (2002) Heart , vol.88 , pp. 378-380
    • Mietus, J.E.1    Peng, C.K.2    Henry, I.3    Goldsmith, R.L.4    Goldberger, A.L.5
  • 40
    • 0041817581 scopus 로고    scopus 로고
    • Statistics and graphs for heart rate variability: pNN50 or pNN20?
    • Hutchinson T.P. Statistics and graphs for heart rate variability: pNN50 or pNN20?. Physiological Measurement 2003, 24(3):N9-N14.
    • (2003) Physiological Measurement , vol.24 , Issue.3
    • Hutchinson, T.P.1
  • 41
    • 0001138328 scopus 로고
    • A k-means clustering algorithm
    • Hartigan J.A., Wong M.A. A k-means clustering algorithm. Applied Statistics 1979, 28(1):100-108.
    • (1979) Applied Statistics , vol.28 , Issue.1 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 46
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press, Cambridge MA, USA, B. Schöllkopf, C.J. Burges, A.J. Smola (Eds.)
    • Platt J. Fast training of support vector machines using sequential minimal optimization. Advances in kernel methods-support vector learning 1998, 185-208. MIT Press, Cambridge MA, USA. B. Schöllkopf, C.J. Burges, A.J. Smola (Eds.).
    • (1998) Advances in kernel methods-support vector learning , pp. 185-208
    • Platt, J.1
  • 47
  • 48
    • 41549153882 scopus 로고    scopus 로고
    • A new methodology for assessment of the performance of heartbeat classification systems
    • Darrington J.M., Hool L.C. A new methodology for assessment of the performance of heartbeat classification systems. BMC Medical Informatics and Decision Making 2008, 8:7.
    • (2008) BMC Medical Informatics and Decision Making , vol.8 , pp. 7
    • Darrington, J.M.1    Hool, L.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.