메뉴 건너뛰기




Volumn 50, Issue 19, 2011, Pages 11153-11169

Hammerstein modeling with structure identification for multi-input multi-output nonlinear industrial processes

Author keywords

[No Author keywords available]

Indexed keywords

A-OPTIMALITY; APPLICATION EXAMPLES; AUTOMATIC CONSTRUCTION; COUPLING PROBLEM; HAMMERSTEIN MODEL; HAMMERSTEIN MODEL STRUCTURE; INDUSTRIAL PROCESSS; LEAST SQUARE; LEAST SQUARES METHODS; MODEL ADEQUACY; MODEL ERRORS; MODEL STRUCTURE SELECTION; MODELING APPROACH; MULTI-INPUT MULTI-OUTPUT; MULTI-OUTPUT; NOISY PROCESS; SATISFACTORY MODELING; STRUCTURE IDENTIFICATION; TERM SELECTION; VECTOR MODELS; WELLPOSEDNESS;

EID: 84860131794     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie102273c     Document Type: Article
Times cited : (7)

References (41)
  • 1
    • 0031076883 scopus 로고    scopus 로고
    • Nonlinear model predictive control using Hammerstein models
    • Fruzzetti, K. P.; Palazoglu, A.; McDonald, K. A. Nonlinear model predictive control using Hammerstein models. J. Process Control 1997, 7 (1), 31.
    • (1997) J. Process Control , vol.7 , Issue.1 , pp. 31
    • Fruzzetti, K.P.1    Palazoglu, A.2    McDonald, K.A.3
  • 2
    • 34547149534 scopus 로고    scopus 로고
    • Nonlinear model predictive control of multivariable processes using block-structured models
    • Harnischmacher, G.; Marquardt, W. Nonlinear model predictive control of multivariable processes using block-structured models. Contr. Eng. Pract. 2007, 15 (10), 1238.
    • (2007) Contr. Eng. Pract. , vol.15 , Issue.10 , pp. 1238
    • Harnischmacher, G.1    Marquardt, W.2
  • 3
    • 82055201757 scopus 로고
    • An iterative method for the identification of nonlinear systems using a Hammerstein model
    • Narendra, K.; Gallman, P. An iterative method for the identification of nonlinear systems using a Hammerstein model. IEEE Trans. Autom. Control 1966, 11 (3), 546.
    • (1966) IEEE Trans. Autom. Control , vol.11 , Issue.3 , pp. 546
    • Narendra, K.1    Gallman, P.2
  • 4
    • 0020101833 scopus 로고
    • Instrumental-variable methods for identification of Hammerstein systems
    • Stoica, P.; Söderström, T. Instrumental-variable methods for identification of Hammerstein systems. Int. J. Control 1982, 35 (3), 459.
    • (1982) Int. J. Control , vol.35 , Issue.3 , pp. 459
    • Stoica, P.1    Söderström, T.2
  • 5
    • 0032022209 scopus 로고    scopus 로고
    • An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems
    • Bai, E. W. An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems. Automatica 1998, 34 (3), 333.
    • (1998) Automatica , vol.34 , Issue.3 , pp. 333
    • Bai, E.W.1
  • 6
    • 7244219740 scopus 로고    scopus 로고
    • Pathwise convergence of recursive identification algorithms for Hammerstein systems
    • Chen, H. F. Pathwise convergence of recursive identification algorithms for Hammerstein systems. IEEE Trans. Autom. Control 2004, 49 (10), 1641.
    • (2004) IEEE Trans. Autom. Control , vol.49 , Issue.10 , pp. 1641
    • Chen, H.F.1
  • 7
    • 0034672909 scopus 로고    scopus 로고
    • Identification of Hammerstein models for control using ASYM
    • Zhu, Y. C. Identification of Hammerstein models for control using ASYM. Int. J. Control 2000, 73 (18), 1692.
    • (2000) Int. J. Control , vol.73 , Issue.18 , pp. 1692
    • Zhu, Y.C.1
  • 8
    • 33746071552 scopus 로고    scopus 로고
    • Continuous-time Hammerstein system identification from sampled data
    • Greblicki, W. Continuous-time Hammerstein system identification from sampled data. IEEE Trans. Autom. Control 2006, 51 (7), 1195.
    • (2006) IEEE Trans. Autom. Control , vol.51 , Issue.7 , pp. 1195
    • Greblicki, W.1
  • 9
    • 9144235451 scopus 로고    scopus 로고
    • Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones
    • Vörös, J. Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones. IEEE Trans. Autom. Control 2003, 48 (12), 2203.
    • (2003) IEEE Trans. Autom. Control , vol.48 , Issue.12 , pp. 2203
    • Vörös, J.1
  • 10
    • 1842843133 scopus 로고    scopus 로고
    • Identification of block-oriented nonlinear systems using orthonormal bases
    • G-omez, J. C.; Baeyens, E. Identification of block-oriented nonlinear systems using orthonormal bases. J. Process Control 2004, 14 (6), 685.
    • (2004) J. Process Control , vol.14 , Issue.6 , pp. 685
    • G-Omez, J.C.1    Baeyens, E.2
  • 11
    • 9744263347 scopus 로고    scopus 로고
    • Convergence of the iterative Hammerstein system identification algorithm
    • Bai, E. W.; Li, D. Convergence of the iterative Hammerstein system identification algorithm. IEEE Trans. Autom. Control 2004, 49 (11), 1929.
    • (2004) IEEE Trans. Autom. Control , vol.49 , Issue.11 , pp. 1929
    • Bai, E.W.1    Li, D.2
  • 12
    • 0029407056 scopus 로고
    • Identification of Hammerstein models using multivariate statistical tools
    • Lakshminarayanan, S.; Shah, S. L.; Nandakumar, K. Identification of Hammerstein models using multivariate statistical tools. Chem. Eng. Sci. 1995, 50 (22), 3599.
    • (1995) Chem. Eng. Sci. , vol.50 , Issue.22 , pp. 3599
    • Lakshminarayanan, S.1    Shah, S.L.2    Nandakumar, K.3
  • 13
    • 0026171066 scopus 로고
    • On the series expansion approach to the identification of Hammerstein systems
    • Pawlak,M. On the series expansion approach to the identification of Hammerstein systems. IEEE Trans. Autom. Control 1991, 36 (6), 763.
    • (1991) IEEE Trans. Autom. Control , vol.36 , Issue.6 , pp. 763
    • Pawlak, M.1
  • 14
    • 27644524925 scopus 로고    scopus 로고
    • Subspace identification of hammerstein systems using least squares support vector machines
    • Goethals, I.; Pelckmans, K.; Suykens, J. A. K.; De Moor, B. Subspace identification of hammerstein systems using least squares support vector machines. IEEE Trans. Autom. Control 2005, 50 (10), 1509.
    • (2005) IEEE Trans. Autom. Control , vol.50 , Issue.10 , pp. 1509
    • Goethals, I.1    Pelckmans, K.2    Suykens, J.A.K.3    De Moor, B.4
  • 15
    • 18444381761 scopus 로고    scopus 로고
    • Identification of MIMO Hammerstein models using least squares support vector machines
    • Goethals, I.; Pelckmans, K.; Suykens, J. A. K.; De Moor, B. Identification of MIMO Hammerstein models using least squares support vector machines. Automatica 2005, 41 (7), 1263.
    • (2005) Automatica , vol.41 , Issue.7 , pp. 1263
    • Goethals, I.1    Pelckmans, K.2    Suykens, J.A.K.3    De Moor, B.4
  • 16
    • 0025464263 scopus 로고
    • Structure identification of nonlinear dynamic systems - A survey on input/output approaches
    • Haber, R.; Unbehauen, H. Structure identification of nonlinear dynamic systems - A survey on input/output approaches. Automatica 1990, 26 (4), 651.
    • (1990) Automatica , vol.26 , Issue.4 , pp. 651
    • Haber, R.1    Unbehauen, H.2
  • 17
    • 0347592205 scopus 로고    scopus 로고
    • An identification algorithm for polynomial NARX models based on simulation error minimization
    • Piroddi, L.; Spinelli, W. An identification algorithm for polynomial NARX models based on simulation error minimization. Int. J. Control 2003, 76 (17), 1767.
    • (2003) Int. J. Control , vol.76 , Issue.17 , pp. 1767
    • Piroddi, L.1    Spinelli, W.2
  • 18
    • 37849012165 scopus 로고    scopus 로고
    • Regressor and structure selection in NARX models using a structuredANOVAapproach
    • Lind, I.; Ljung, L. Regressor and structure selection in NARX models using a structuredANOVAapproach. Automatica 2008, 44 (2), 383.
    • (2008) Automatica , vol.44 , Issue.2 , pp. 383
    • Lind, I.1    Ljung, L.2
  • 19
    • 0024685547 scopus 로고
    • Identification of MIMO non-linear systems using a forward-regression orthogonal estimator
    • Billings, S. A.; Chen, S.; Korenberg, M. J. Identification of MIMO non-linear systems using a forward-regression orthogonal estimator. Int. J. Control 1989, 49 (6), 2157.
    • (1989) Int. J. Control , vol.49 , Issue.6 , pp. 2157
    • Billings, S.A.1    Chen, S.2    Korenberg, M.J.3
  • 20
    • 47749106824 scopus 로고    scopus 로고
    • Model selection approaches for non-linear system identification: A review
    • Hong, X.; Mitchell, R. J.; Chen, S.; Harris, C. J.; Li, K.; Irwin, G. W. Model selection approaches for non-linear system identification: A review. Int. J. Syst. Sci. 2008, 39 (10), 925.
    • (2008) Int. J. Syst. Sci. , vol.39 , Issue.10 , pp. 925
    • Hong, X.1    Mitchell, R.J.2    Chen, S.3    Harris, C.J.4    Li, K.5    Irwin, G.W.6
  • 21
    • 0024067409 scopus 로고
    • Identification of output-affine systems using an orthogonal least squares algorithm
    • Billings, S. A.; Korenberg, M. J.; Chen, S. Identification of output-affine systems using an orthogonal least squares algorithm. Int. J. Syst. Sci. 1988, 19 (8), 1559.
    • (1988) Int. J. Syst. Sci. , vol.19 , Issue.8 , pp. 1559
    • Billings, S.A.1    Korenberg, M.J.2    Chen, S.3
  • 22
    • 0030195189 scopus 로고    scopus 로고
    • Regularized orthogonal least squares algorithm for constructing radial basis functions networks
    • Chen, S.; Chng, E. S.; Alkadhimi, K. Regularized orthogonal least squares algorithm for constructing radial basis functions networks. Int. J. Control 1996, 64 (5), 829.
    • (1996) Int. J. Control , vol.64 , Issue.5 , pp. 829
    • Chen, S.1    Chng, E.S.2    Alkadhimi, K.3
  • 23
    • 29444447147 scopus 로고    scopus 로고
    • Local regularization assisted orthogonal least squares regression
    • Chen, S. Local regularization assisted orthogonal least squares regression. Neurocomputing 2006, 69 (4-6), 559.
    • (2006) Neurocomputing , vol.69 , Issue.4-6 , pp. 559
    • Chen, S.1
  • 24
    • 0035271447 scopus 로고    scopus 로고
    • Nonlinear model structure detection using optimum experimental design and orthogonal least squares
    • Hong, X.; Harris, C. J. Nonlinear model structure detection using optimum experimental design and orthogonal least squares. IEEE Trans. Neural Netw. 2001, 12 (2), 435.
    • (2001) IEEE Trans. Neural Netw. , vol.12 , Issue.2 , pp. 435
    • Hong, X.1    Harris, C.J.2
  • 25
    • 0036738761 scopus 로고    scopus 로고
    • Nonlinear model structure design and construction using orthogonal least squares and D-optimality design
    • Hong, X.; Harris, C. J. Nonlinear model structure design and construction using orthogonal least squares and D-optimality design. IEEE Trans. Neural Netw. 2002, 13 (5), 1245.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.5 , pp. 1245
    • Hong, X.1    Harris, C.J.2
  • 27
    • 0038548172 scopus 로고    scopus 로고
    • Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design
    • Chen, S.; Hong, X.; Harris, C. J. Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design. IEEE Trans. Autom. Control 2003, 48 (6), 1029.
    • (2003) IEEE Trans. Autom. Control , vol.48 , Issue.6 , pp. 1029
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 28
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their application to non-linear system identification
    • Chen, S.; Billings, S. A.; Luo, W. Orthogonal least squares methods and their application to non-linear system identification. Int. J. Control 1989, 50 (5), 1873.
    • (1989) Int. J. Control , vol.50 , Issue.5 , pp. 1873
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 29
    • 0036697720 scopus 로고    scopus 로고
    • Multi-output regression using a locally regularised orthogonal least-squares algorithm
    • Chen, S. Multi-output regression using a locally regularised orthogonal least-squares algorithm. IEE Proc. Vis. Image Signal Process. 2002, 149 (4), 185.
    • (2002) IEE Proc. Vis. Image Signal Process. , vol.149 , Issue.4 , pp. 185
    • Chen, S.1
  • 30
    • 0037355208 scopus 로고    scopus 로고
    • Sparse multi-output radial basis function network construction using combined locally regularised orthogonal least square and D-optimality experimental design
    • Chen, S.; Hong, X.; Harris, C. J. Sparse multi-output radial basis function network construction using combined locally regularised orthogonal least square and D-optimality experimental design. IEE Proc. Contr. Theor. Appl. 2003, 150 (2), 139.
    • (2003) IEE Proc. Contr. Theor. Appl. , vol.150 , Issue.2 , pp. 139
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 31
    • 67349167412 scopus 로고    scopus 로고
    • A time/space separation based Hammerstein modeling approach for nonlinear distributed parameter processes
    • Qi, C. K.; Li, H.-X. A time/space separation based Hammerstein modeling approach for nonlinear distributed parameter processes. Comput. Chem. Eng. 2009, 33 (7), 1247.
    • (2009) Comput. Chem. Eng. , vol.33 , Issue.7 , pp. 1247
    • Qi, C.K.1    Li, H.-X.2
  • 33
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay, D. J. C. Bayesian interpolation. Neural. Comput. 1992, 4 (3), 415.
    • (1992) Neural. Comput. , vol.4 , Issue.3 , pp. 415
    • MacKay, D.J.C.1
  • 34
    • 33646171921 scopus 로고    scopus 로고
    • Identification of MIMO Hammerstein systems using cardinal spline functions
    • Chan, K. H.; Bao, J.; Whiten, W. J. Identification of MIMO Hammerstein systems using cardinal spline functions. J. Process Control 2006, 16 (7), 659.
    • (2006) J. Process Control , vol.16 , Issue.7 , pp. 659
    • Chan, K.H.1    Bao, J.2    Whiten, W.J.3
  • 35
    • 0030085373 scopus 로고    scopus 로고
    • Modeling pH neutralization processes using fuzzy-neural approaches
    • Nie, J.; Loh, A. P.; Hang, C. C. Modeling pH neutralization processes using fuzzy-neural approaches. Fuzzy Set. Syst. 1996, 78 (1), 5.
    • (1996) Fuzzy Set. Syst. , vol.78 , Issue.1 , pp. 5
    • Nie, J.1    Loh, A.P.2    Hang, C.C.3
  • 36
    • 0036236141 scopus 로고    scopus 로고
    • Nonlinear system identification
    • Nowak, R. D. Nonlinear system identification. Circ. Syst. Signal Process. 2002, 21 (1), 109.
    • (2002) Circ. Syst. Signal Process. , vol.21 , Issue.1 , pp. 109
    • Nowak, R.D.1
  • 37
    • 2342553043 scopus 로고    scopus 로고
    • Design of multilevel perturbation signals with harmonic properties suitable for nonlinear system identification
    • Barker, H. A.; Tan, A. H.; Godfrey, K. R. Design of multilevel perturbation signals with harmonic properties suitable for nonlinear system identification. IEE Proc. Contr. Theor. Appl. 2004, 151 (2), 145.
    • (2004) IEE Proc. Contr. Theor. Appl. , vol.151 , Issue.2 , pp. 145
    • Barker, H.A.1    Tan, A.H.2    Godfrey, K.R.3
  • 39
    • 0033285803 scopus 로고    scopus 로고
    • Multi-level pseudo-random signal design and "model-on-demand" estimation applied to nonlinear identification of a RTP wafer reactor
    • San Diego, CA
    • Braun, M. W.; Rivera, D. E.; Stenman, A.; Foslien, W.; Hrenya, C. Multi-level pseudo-random signal design and "model-on-demand" estimation applied to nonlinear identification of a RTP wafer reactor. In Proceedings of the 1999 American Control Conference, San Diego, CA, 1999; p 1573.
    • (1999) Proceedings of the 1999 American Control Conference , pp. 1573
    • Braun, M.W.1    Rivera, D.E.2    Stenman, A.3    Foslien, W.4    Hrenya, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.